SEARCH

SEARCH BY CITATION

References

  • Apostol S, Szalai G, Sujbert L, Popova LP, Janda T. 2006. Non-invasive monitoring of the light-induced cyclic photosynthetic electron flow during cold hardening in wheat leaves. Zeitschrift fur Naturforschung 61c: 734740.
  • Asada K, Heber U, Schreiber U. 1993. Electron flow to the intersystem chain from stromal components and cyclic electron flow in maize chloroplasts, as detected in intact leaves by monitoring redox change of P700 and chlorophyll fluorescence. Plant Cell Physiology 34: 3950.
  • Brown RH, Bouton JH, Rigsby LL, Rigler M. 1983. Photosynthesis of grass species differing in carbon dioxide fixation pathways. VIII. Ultrastructural characteristics of Panicum species in the Laxa group. Plant Physiology 71: 425431.
  • Brown RH, Hattersley PW. 1989. Leaf anatomy of C3–C4 species as related to evolution of C4 photosynthesis. Plant Physiology 91: 15431550.
  • Cheng SH, Moore BD, Edwards GE, Ku MSB. 1988. Photosynthesis in Flaveria brownii, a C4-like species. Leaf anatomy, characteristics of CO2 exchange, compartmentation of photosynthetic enzymes, and metabolism of 14CO2. Plant Physiology 87: 867873.
  • Dai Z, Ku MSB, Edward GE. 1996. Oxygen sensitivity of photosynthesis and photorespiration in different photosynthetic types in the genus Flaveria. Planta 198: 563571.
  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D, Finazzi G, Joliot P, Barbato R, Leister D. 2008. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132: 273285.
  • Ducruet JM. 2003. Chlorophyll thermoluminescence of leaf discs: simple instruments and progress in signal interpretation open the way to new ecophysiological indicators. Journal of Experimental Botany 54: 24192430.
  • Ducruet JM, Roman M, Havaux M, Janda T, Gallais A. 2005. Cyclic electron flow around PSI monitored by afterglow luminescence in leaves of maize inbred lines (Zea mays L.): correlation with chilling tolerance. Planta 221: 567579.
  • Gowik U, Westhoff P. 2010. The path from C3 to C4 photosynthesis. Plant Physiology 155: 5663.
  • Hatch MD. 1987. C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta 895: 81106.
  • Havaux M, Rumeau D, Ducruet JM. 2005. Probing the FQR and NDH activities involved in cyclic electron transport photosystem I by the “afterglow” luminescence. Biochimica et Biophysica Acta 1709: 203213.
  • Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M, Armbruster U, Leister D. 2013. PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Molecular Cell 49: 113.
  • Hofer MU, Santore UJ, Westhoff P. 1992. Differential accumulation of the 10-, 16- and 23-kDa peripheral components of the water-splitting complex of photosystem II in mesophyll and bundle sheath chloroplasts of the dicotyledonous C4 plant Flaveria trinervia (Spreng.) C. Mohr. Planta 186: 304312.
  • Holaday AS, Lee KW, Chollet R. 1984. C3–C4 intermediate species in the genus Flaveria: leaf anatomy, ultrastructure, and the effect of O2 on the CO2 compensation concentration. Planta 160: 2530.
  • Horvath EM, Peter SO, Joet T, Rumeau D, Cournac L, Horvath GV, Kavanagh TA, Schafer C, Peltier G, Medgyesy P. 2000. Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to modulate stomatal closure. Plant Physiology 123: 13371350.
  • Hylton CM, Rawsthorne S, Smith AM, Jones DA, Woolhouse HW. 1988. Glycine decarboxylase is confined to the bundle sheath cells of leaves of C3–C4 intermediate species. Planta 175: 452459.
  • Ifuku K, Endo T, Shikanai T, Aro EM. 2011. Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits. Plant Cell Physiology 52: 15601568.
  • Joliot P, Joliot A. 2006. Cyclic electron flow in C3 plants. Biochimica et Biophysica Acta 1757: 362368.
  • Kanai R, Edwards GE. 1999. The biochemistry of C4 photosynthesis. In: Sage RF, Monson RK, eds. C4 plant biology. San Diego, CA, USA: Academic Press, 215249.
  • Ketchner SL, Sayre RT. 1992. Characterization of the expression of the photosystem II-oxygen evolving complex in C4 species of Flaveria. Plant Physiology 98: 11541162.
  • Kinsman EA, Pyke KA. 1998. Bundle sheath cells and cell-specific plastid development in Arabidopsis leaves. Development 125: 18151822.
  • Klughammer C, Schreiber U. 1998. Measuring P700 absorbance changes in the near infra-red spectral region with a dual wavelength pulse modulation system. In: Garab G, ed. Photosynthesis, mechanisms and effects, Vol. 5. Dordrecht, the Netherlands: Kluwer Academic, 43574360.
  • Ku MSB, Monson RK, Littlejohn RO, Nakamoto H, Fisher DB, Edward GE. 1983. Photosynthetic characteristics of C3–C4 intermediate Flaveria species I. Leaf anatomy, photosynthetic responses to O2 and CO2, and activities of key enzymes in the C3 and C4 pathways. Plant Physiology 71: 944948.
  • Ku MSB, Wu J, Dai Z, Scott RA, Chu C, Edward GE. 1991. Photosynthetic and photorespiratory characteristics of Flaveria species. Plant Physiology 96: 518528.
  • Laetsch WM, Price I. 1971. Development of the dimorphic chloroplasts of sugar cane. American Journal of Botany 56: 7787.
  • Lintala M, Allahverdiyeva Y, Kangasjarvi S, Lehtimaki N, Keranen M, Rintamaki E, Aro EM, Mulo P. 2009. Comparative analysis of leaf-type ferredoxin-NADP+ oxidoreductase isoforms in Arabidopsis thaliana. Plant Journal 57: 11031115.
  • Long SP. 1999. Environmental responses. In: Sage RF, Monson RK, eds. C4 plant biology. San Diego, CA, USA: Academic Press, 215249.
  • McKown AD, Moncalvo JM, Dengler NG. 2005. Phylogeny of Flaveria (Asteracae) and inference of C4 photosynthesis evolution. American Journal of Botany 92: 19111928.
  • Miranda T, Ducruet JM. 1995. Characterization of the chlorophyll thermoluminescence afterglow in dark-adapted or far-red-illuminated plant leaves. Plant Physiology and Biochemistry 33: 689699.
  • Monson RK, Moore Bd. 1989. On the significance of C3–C4 intermediate photosynthesis to the evolution of C4 photosynthesis. Plant, Cell & Environment 12: 689699.
  • Monson RK, Moore Bd, Ku MSB, Edward GE. 1986. Co-function of C3- and C4-photosynthetic pathways in C3, C4 and C3–C4 intermediate Flaveria species. Planta 168: 493502.
  • Moore BD, Ku MSB, Edwards GE. 1989. Expression of C4-like photosynthesis in several species of Flaveria. Plant, Cell & Environment 12: 541549.
  • Moore BD, Monson RK, Ku MSB, Edwards GE. 1988. Activities of principal photosynthetic and photorespiratory enzymes in leaf mesophyll and bundle sheath protoplasts from the C3–C4 intermediate Flaveria ramosissima. Plant Cell Physiology 29: 9991006.
  • Muhaidat R, Sage TL, Frohlich MW, Dengler NG, Sage RF. 2011. Characterization of C3–C4 intermediate species in the genus Heliotropium L. (Boraginaceae): anatomy, ultrastructure and enzyme activity. Plant, Cell & Environment 34: 17231736.
  • Munekage NY, Eymery F, Rumeau D, Cuine S, Oguri M, Nakamura N, Yokota A, Genty B, Peltier G. 2010. Elevated expression of PGR5 and NDH-H in bundle sheath chloroplasts in C4 Flaveria species. Plant Cell Physiology 51: 664668.
  • Munekage NY, Genty B, Peltier G. 2008. Effect of PGR5 impairment on photosynthesis and growth in Arabidopsis thaliana. Plant Cell Physiology 49: 16881698.
  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T. 2004. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429: 579582.
  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T. 2002. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110: 361371.
  • Nakamoto H, Ku MSB, Edward GE. 1983. Photosynthetic characteristics of C3–C4 intermediate Flaveria species II. Kinetics properties of phosphoenolpyruvate carboxylase from C3, C4 and C3–C4 intermediate species. Plant Cell Physiology 24: 13871393.
  • Ogawa T, Nishimura K, Aoki T, Takase H, Tomizawa K, Ashida H, Yokota A. 2009. A phosphofructokinase B-type carbohydrate kinase family protein, NARA 5, for massive expression of plastid-encoded photosynthetic genes in Arabidopsis. Plant Physiology 151: 114128.
  • Okegawa Y, Long TA, Iwano M, Takayama S, Kobayashi Y, Covert SF, Shikanai T. 2007. A balanced PGR5 level is required for chloroplast development and optimum operation of cyclic electron transport around photosystem I. Plant Cell Physiology 48: 14621471.
  • Oswald A, Streubel M, Ljungberg U, Hermans J, Eskins K, Westhoff P. 1990. Differential biogenesis of photosystem-II in mesophyll and bundle sheath cells of ‘malic’ enzyme NADP+-type C4 plants. European Journal of Biochemistry 190: 185194.
  • Peeva VN, Toth SZ, Cornic G, Ducruet JM. 2012. Thermoluminescence and P700 redox kinetics as complementary tools to investigate the cyclic/chlororespiratory electron pathways in stress conditions in barley leaves. Physiologia Plantarum 144: 8397.
  • Peng L, Yamamoto H, Shikanai T. 2011. Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. Biochimica et Biophysica Acta 1807: 945953.
  • Rumeau D, Becuwe-Linka N, Beyly A, Louwagie M, Garin J, Peltier G. 2005. New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants. The Plant Cell 17: 219232.
  • Rumpho ME, Ku MSB, Cheng SH, Edward GE. 1984. Photosynthetic characteristics of C3–C4 intermediate Flaveria species III. Reduction of photorespiration by a limited C4 pathway of photosynthesis in Flaveria ramosissima. Plant Physiology 75: 993996.
  • Sage RF. 1999. Why C4 photosynthesis? In: Sage RF, Monson RK, eds. C4 plant biology. San Diego, CA, USA: Academic Press, 215249.
  • Sage RF. 2004. The evolution of C4 photosynthesis. New Phytologist 161: 341370.
  • Sage RF, Christin PA, Edward EJ. 2011. The C4 plant lineages of planet Earth. Journal of Experimental Botany 62: 31553169.
  • Sage RF, Sage TL, Kocacinar K. 2012. Photorespiration and the evolution of C4 photosynthesis. Annual Review of Plant Biology 63: 1947.
  • Sanda S, Yoshida K, Kuwano M, Kawamura T, Munekage YN, Akashi K, Yokota A. 2011. Responses of the photosynthetic electron transport system to excess light energy caused by water deficient in wild watermelon. Physiologia Plantarum 142: 247264.
  • Sheen JY, Sayre RT, Bogorad L. 1987. Differential expression of oxygen-evolving polypeptide genes in maize leaf cell types. Plant Molecular Biology 9: 217226.
  • Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A. 1998. Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proceedings of the National Academy of Science, USA 95: 97059709.
  • Takabayashi A, Kishine M, Asada K, Endo T, Sato F. 2005. Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. Proceedings of the National Academy of Science, USA 102: 1689816903.
  • Watanabe N, Che F-S, Iwano M, Takayama S, Nakano T, Yoshida S, Isogai A. 1998. Molecular characterization of photomixotrophic tobacco cells resistant to photoporphyrinogen oxidase-inhibiting herbicides. Plant Physiology 118: 751758.