SEARCH

SEARCH BY CITATION

References

  • Adair EC, Reich PB, Hobbie SE, Knops JMH. 2009. Interactive effects of time, CO2, N, and diversity on total belowground carbon allocation and ecosystem carbon storage in a grassland community. Ecosystems 12: 10371052.
  • Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter J, Korhola A, Kulmala M, O'Donnell D et al. 2010. Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience 3: 525532.
  • Bingeman CW, Varner JE, Martin WP. 1953. The effect of the addition of organic materials on the decomposition of an organic soil. Soil Science Society of America Proceedings 17: 3438.
  • Broadbent FE. 1948. Nitrogen release and carbon loss from soil organic matter during decomposition of added plant residues. Soil Science Society of America Journal 12: 246249.
  • Broadbent FE, Bartholomew WV. 1949. The effect of quantity of plant material added to soil on its rate of decomposition. Soil Science Society of America Journal 13: 271274.
  • Broadbent FE, Norman AG. 1947. Some factors affecting the availability of the organic nitrogen in soil long dash a preliminary report. Soil Science Society of America Journal 11: 264267.
  • Brown AL, Garland JL, Day FP. 2009. Physiological profiling of soil microbial communities in a Florida scrub-oak ecosystem: spatial distribution and nutrient limitations. Microbial Ecology 57: 1424.
  • Cambardella CA, Elliott ET. 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal 56: 777783.
  • Carney KM, Hungate BA, Drake BG, Megonigal JP. 2007. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proceedings of the National Academy of Sciences, USA 104: 49904995.
  • Chapin FS III, McFarland J, McGuire AD, Euskirchen ES, Ruess RW, Kielland K. 2009. The changing global carbon cycle: linking plant-soil carbon dynamics to global consequences. Journal of Ecology 97: 840850.
  • Cheng WX, Johnson DW. 1998. Elevated CO2, rhizosphere processes, and soil organic matter decomposition. Plant and Soil 202: 167174.
  • Cheng WX, Sims DA, Luo YQ, Coleman JS, Johnson DW. 2000. Photosynthesis, respiration, and net primary production of sunflower stands in ambient and elevated atmospheric CO2 concentrations: an invariant NPP:GPP ratio? Global Change Biology 6: 931941.
  • Cotrufo MF, Ineson P, Scott A. 1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 1: 4354.
  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD et al. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology 7: 357373.
  • Dawes MA, Hagedorn F, Handa IT, Streit K, Ekblad A, Rixen C, Korner C, Hattenschwiler S. 2013. An alpine treeline in a carbon dioxide-rich world: synthesis of a nine-year free-air carbon dioxide enrichment study. Oecologia 171: 623637.
  • Day FP, Schroeder RE, Stover DB, Brown ALP, Butnor JR, Dilustro J, Hungate BA, Dijkstra P, Duval BD, Seiler TJ et al. 2013. The effects of 11 yr of CO2 enrichment on roots in a Florida scrub-oak ecosystem. New Phytologist 199: 7488.
  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D et al. 2007. Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 501568.
  • Diaz S, Grime JP, Harris J, McPherson E. 1993. Evidence of a feedback mechanism limiting plant-response to elevated carbon-dioxide. Nature 364: 616617.
  • Dieleman WI, Luyssaert S, Rey A, de Angelis P, Barton CV, Broadmeadow MS, Broadmeadow SB, Chigwerewe KS, Crookshanks M, Dufrene E et al. 2010. Soil [N] modulates soil C cycling in CO2-fumigated tree stands: a meta-analysis. Plant, Cell & Environment 33: 20012011.
  • Dieleman WIJ, Vicca S, Dijkstra FA, Hagedorn F, Hovenden MJ, Larsen KS, Morgan JA, Volder A, Beier C, Dukes JS et al. 2012. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Global Change Biology 18: 26812693.
  • Dijkstra P, Hymus G, Colavito D, Vieglais D, Cundari C, Johnson D, Hungate BA, Hinkle CR, Drake BG. 2002. Elevated atmospheric CO2 stimulates shoot growth in a Florida scrub-oak ecosystem. Global Change Biology 8: 90103.
  • Dolman AJ, van der Werf GR, van der Molen MK, Ganssen G, Erisman JW, Strengers B. 2010. A carbon cycle science update since IPCC AR-4. Ambio 39: 402412.
  • Dore S, Hymus GJ, Johnson DP, Hinkle CR, Valentini R, Drake BG. 2003. Cross validation of open-top chamber and eddy covariance measurements of ecosystem CO2 exchange in a Florida scrub-oak ecosystem. Global Change Biology 9: 8495.
  • Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML et al. 2011. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecology Letters 14: 349357.
  • Finzi AC, Cole JJ, Doney SC, Holland EA, Jackson RB. 2011. Research frontiers in the analysis of coupled biogeochemical cycles. Frontiers in Ecology and the Environment 9: 7480.
  • Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME et al. 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, USA 104: 14 01414 019.
  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450: 277280.
  • Friedlingstein P, Prentice IC. 2010. Carbon–climate feedbacks: a review of model and observation based estimates. Current Opinion in Environmental Sustainability 2: 251257.
  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320: 889892.
  • Garland JLR, Roberts MS, Levine LH, Mills AL. 2003. Community-level physiological profiling performed with an oxygen-sensitive fluorophore in a microtiter plate. Applied & Environmental Microbiology 69: 29942998.
  • Garten CT Jr, Iversen CM, Norby RJ. 2011. Litterfall N-15 abundance indicates declining soil nitrogen availability in a free-air CO2 enrichment experiment. Ecology 92: 133139.
  • Gerber S, Hedin LO, Oppenheimer M, Pacala SW, Shevliakova E. 2010. Nitrogen cycling and feedbacks in a global dynamic land model. Global Biogeochemical Cycles 24, GB1001.
  • Gielen B, Calfapietra C, Lukac M, Wittig VE, De Angelis P, Janssens IA, Moscatelli MC, Grego S, Cotrufo MF, Godbold DL et al. 2005. Net carbon storage in a poplar plantation (POPFACE) after three years of free-air CO2 enrichment. Tree Physiology 25: 13991408.
  • Gill RA, Anderson LJ, Polley HW, Johnson HB, Jackson RB. 2006. Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2. Ecology 87: 4152.
  • de Graaff M-A, van Groenigen K-J, Six J, Hungate BA, van Kessel C. 2006. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biology 12: 20772091.
  • van Groenigen KJ, van Kessel C, Hungate BA. 2012. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nature Climate Change 3: 288291.
  • van Groenigen KJ, Osenberg CW, Hungate BA. 2011. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475: 214216.
  • Hagedorn F, van Hees PAW, Handa IT, Hättenschwiler S. 2008. Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline. Global Biogeochemical Cycles 22: GB2004.
  • Heimann M, Reichstein M. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451: 289292.
  • Hofmockel KS, Schlesinger WH. 2007. Carbon dioxide effects on heterotrophic dinitrogen fixation in a temperate pine forest. Soil Science Society of America Journal 71: 140144.
  • Hoosbeek MR. 2004. More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): cause of increased priming effect? Global Biogeochemical Cycles 18: GB1040.
  • Hungate BA, Chapin FS, Zhong H, Holland EA, Field CB. 1997a. Stimulation of grassland nitrogen cycling under carbon dioxide enrichment. Oecologia 109: 149153.
  • Hungate BA, Dijkstra P, Johnson DW, Hinkle CR, Drake BG. 1999. Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Global Change Biology 5: 781789.
  • Hungate BA, van Groenigen K-J, Six J, Jastrow JD, Luo Y, de Graaff M-A, van Kessel C, Osenberg CW. 2009. Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses. Global Change Biology 15: 20202034.
  • Hungate BA, Holland EA, Jackson RB, Chapin FS, Mooney HA, Field CB. 1997b. The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388: 576579.
  • Hungate BA, Jackson RB, Field CB, Chapin FS. 1996. Detecting changes in soil carbon in CO2 enrichment experiments. Plant and Soil 187: 135145.
  • Hungate BA, Johnson DW, Dijkstra P, Hymus G, Stiling P, Megonigal JP, Pagel AL, Moan JL, Day F, Li JH et al. 2006. Nitrogen cycling during seven years of atmospheric CO2 enrichment in a scrub oak woodland. Ecology 87: 2640.
  • Hungate BA, Lund CP, Pearson HL, Chapin FS. 1997c. Elevated CO2 and nutrient addition alter soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland. Biogeochemistry 37: 89109.
  • Hungate BA, Reichstein M, Dijkstra P, Johnson D, Hymus G, Tenhunen JD, Hinkle CR, Drake BG. 2002. Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment. Global Change Biology 8: 289298.
  • Hymus GJ, Johnson DP, Dore S, Anderson HP, Hinkle CR, Drake BG. 2003. Effects of elevated atmospheric CO2 on net ecosystem CO2 exchange of a scrub-oak ecosystem. Global Change Biology 9: 18021812.
  • Iversen CM, Keller JK, Garten CT Jr, Norby RJ. 2012. Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2-enrichment. Global Change Biology 18: 16841697.
  • Iversen CM, Ledford J, Norby RJ. 2008. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytologist 179: 837847.
  • Jain A, Yang X, Kheshgi H, McGuire AD, Post W, Kicklighter D. 2009. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors. Global Biogeochemical Cycles 23: GB4028.
  • Jastrow JD, Miller RM, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE. 2005. Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biology 11: 20572064.
  • Jenkinson DW, Goulding K, Powlson DS. 1999. Nitrogen deposition and carbon sequestration. Nature 400: 629.
  • Johnson DW, Ball JT, Walker RF. 1997. Effects of CO2 and nitrogen fertilization on vegetation and soil nutrient content in juvenile ponderosa pine. Plant and Soil 190: 2940.
  • Johnson DW, Hoylman AM, Ball JT, Walker RF. 2006. Ponderosa pine responses to elevated CO2 and nitrogen fertilization. Biogeochemistry 77: 157175.
  • Johnson DW, Norby RJ, Hungate BA. 2001. Effects of elevated CO2 on nutrient cycling in forests. In: Karnosky DF, Ceulemans R, Scarascia-Mugnozza GE, Innes JL, eds. The impact of carbon dioxide and other greenhouse gases on forest ecosystems. Report No. 3 of the IUFRO Task Force on Environmental Change. Wallingford, UK: CAB, 237268.
  • Johnson DW, Thomas RB, Griffin KL, Tissue DT, Ball JT, Strain BR, Walker RF. 1998. Effects of carbon dioxide and nitrogen on growth and nitrogen uptake in ponderosa and loblolly pine. Journal of Environmental Quality 27: 414425.
  • Klamer M, Roberts MS, Levine LH, Drake BG, Garland JL. 2002. Influence of elevated CO2 on the fungal community in a coastal scrub oak forest soil investigated with terminal-restriction fragment length polymorphism analysis. Applied & Environmental Microbiology 68: 43704376.
  • Langley JA, Dijkstra P, Drake BG, Hungate BA. 2003. Ectomycorrhizal colonization, biomass, and production in a regenerating scrub oak forest in response to elevated CO2. Ecosystems 6: 424430.
  • Langley JA, Drake B, Hungate BA. 2002. Extensive belowground carbon storage supports roots and mycorrhizae in regenerating scrub oaks. Oecologia 131: 542548.
  • Langley JA, McKinley DC, Wolf AA, Hungate BA, Drake BG, Megonigal JP. 2009. Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO2. Soil Biology & Biochemistry 41: 5460.
  • Leavitt SW, Paul EA, Kimball BA, Hendrey GR, Mauney JR, Rauschkolb R, Rogers H, Lewin KF, Nagy J, Pinter PJ et al. 1994. Carbon-isotope dynamics of free-air CO2 enriched cotton and soils. Agricultural and Forest Meteorology 70: 87101.
  • LeBauer DS, Treseder KK. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89: 371379.
  • Li J, Powell TL, Seiler TJ, Johnson DP, Anderson HP, Bracho R, Hungate BA, Hinkle CR, Drake BG. 2007. Impacts of Hurricane Frances on Florida scrub-oak ecosystem processes: defoliation, net CO2 exchange and interactions with elevated CO2. Global Change Biology 13: 11011113.
  • Lohnis F. 1926. Nitrogen availability of green manures. Soil Science Society of America Journal 22: 171177.
  • Luo YQ, Hui DF, Zhang DQ. 2006. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87: 5363.
  • Luo YQ, Weng ES. 2011. Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends in Ecology & Evolution 26: 96104.
  • Marhan S, Kandeler E, Rein S, Fangmeier A, Niklaus PA. 2010. Indirect effects of soil moisture reverse soil C sequestration responses of a spring wheat agroecosystem to elevated CO2. Global Change Biology 16: 469483.
  • McKinley DC, Romero JC, Hungate BA, Drake BG, Megonigal JP. 2009. Does deep soil N availability sustain long-term ecosystem responses to elevated CO2? Global Change Biology 15: 20352048.
  • McMurtrie RE, Norby RJ, Medlyn BE, Dewar RC, Pepper DA, Reich PB, Barton CVM. 2008. Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Functional Plant Biology 35: 521534.
  • Morgan JA, Knight WG, Dudley LM, Hunt HW. 1994. Enhanced root-system C-sink activity, water relations and aspects of nutrient acquisition in mycotrophic Bouteloua gracilis subjected to CO2 enrichment. Plant and Soil 165: 139146.
  • Morgan JA, Pataki DE, Korner C, Clark H, Del Grosso SJ, Grunzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, Nippert JB, Nowak RS, Parton WJ, Polley HW, Shaw MR. 2004. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140: 1125.
  • Nadelhoffer KJ, Emmett BA, Gunderson P, Kjonnas OJ, Koopmans CJ, Schleppl P, Tietma A, Wright RF. 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398: 145148.
  • Nadelhoffer KJ. 1990. Microlysimeter for measuring nitrogen mineralization and microbial respiration in aerobic soil incubations. Soil Science Society of America Journal 54: 411415.
  • Niklaus PA, Falloon P. 2006. Estimating soil carbon sequestration under elevated CO2 by combining carbon isotope labelling with soil carbon cycle modelling. Global Change Biology 12: 19091921.
  • Norby RJ, Cotrufo MF, Ineson P, O'Neill EG, Canadell JG. 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127: 153167.
  • Norby RJ, Delucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJ, Ceulemans R et al. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences, USA 102: 18 05218 056.
  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE. 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences, USA 107: 19 36819 373.
  • Norby RJ, Zak DR. 2011. Ecological lessons from Free-Air CO2 Enrichment (FACE) experiments. Annual Review of Ecology, Evolution, & Systematics 42: 181203.
  • Parton WJ, Schimel DS, Cole CV, Ojima DS. 1987. Analysis of factors controlling soil organic levels of grasslands in the Great Plains. Soil Science Society of America Journal 51: 11731179.
  • Paterson E, Thornton B, Midwood AJ, Osborne SM, Sim A, Millard P. 2008. Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources. Soil Biology & Biochemistry 40: 24342440.
  • Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC. 2012. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecology Letters 15: 10421049.
  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J. 2006a. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440: 922925.
  • Reich PB, Hungate BA, Luo Y. 2006b. Carbon–nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution & Systematics 37: 611636.
  • Reid JP, Adair EC, Hobbie SE, Reich PB. 2012. Biodiversity, nitrogen deposition, and CO2 affect grassland soil carbon cycling but not storage. Ecosystems 15: 580590.
  • Schortemeyer M, Dijkstra P, Johnson DW, Drake BG. 2000. Effects of elevated atmospheric CO2 concentration on C and N pools and rhizosphere processes in a Florida scrub oak community. Global Change Biology 6: 383391.
  • Seiler TJ, Rasse DP, Li J, Dijkstra P, Anderson HP, Johnson DP, Powell TL, Hungate BA, Hinkle CR, Drake BG. 2009. Disturbance, rainfall and contrasting species responses mediated aboveground biomass response over 11 years of CO2 enrichment in a Florida Scrub-Oak ecosystem. Global Change Biology 15: 356367.
  • Smith P. 2004. How long before a change in soil organic carbon can be detected? Global Change Biology 10: 18781883.
  • Sokolov AP, Kicklighter DW, Melillo JM, Felzer BS, Schlosser CA, Cronin TW. 2008. Consequences of considering carbon–nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. Journal of Climate 21: 37763796.
  • Stover DB, Day FP, Butnor JR, Drake BG. 2007. Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar. Ecology 88: 13281334.
  • Stulen I, Den Hertog J. 1993. Root-growth and functioning under atmospheric CO2 enrichment. Vegetatio 104: 99115.
  • Taneva L, Gonzalez-Meler MA. 2008. Decomposition kinetics of soil carbon of different age from a forest exposed to 8 years of elevated atmospheric CO2 concentration. Soil Biology & Biochemistry 40: 26702677.
  • Thornton PE, Lamarque J-F, Rosenbloom NA, Mahowald NM. 2007. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles 21: GB4018.
  • Tingey DT, Phillips DL, Johnson MG. 2000. Elevated CO2 and conifer roots: effects on growh, life span and turnover. New Phytologist 147: 87103.
  • Trueman RJ, Gonzalez-Meler MA. 2005. Accelerated belowground C cycling in a managed agriforest ecosystem exposed to elevated carbon dioxide concentrations. Global Change Biology 11: 12581271.
  • Trueman RJ, Taneva L, Gonzalez-Meler MA, Oechel WC, BassiriRad H. 2009. Carbon losses in soils previously exposed to elevated atmospheric CO2 in a chaparral ecosystem: potential implications for a sustained biospheric C sink. Journal of Geochemical Exploration 102: 142148.
  • Väisänen RKR, Robers MS, Garland JL, Frey SD, Dawson LA. 2005. Physiological and molecular characterization of microbial communities associated with different water-stable aggregate size classes. Soil Biology & Biochemistry 37: 20072016.
  • Van Veen JA, Liljeroth E, Lekkerkerk LJA, Van De Geijn SC. 1991. Carbon fluxes in plant-soil systems at elevated atmospheric carbon dioxide levels. Ecological Applications 1: 175181.
  • Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19: 703707.
  • Wang Y-P, Houlton BZ. 2009. Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon-climate feedback. Geophysical Research Letters 36: L24403.
  • Zabaloy MCL, Lehman RM, Frey SD, Garland JL. 2008. Optimization of an oxygen-based approach for community-level physiological profiling of soils. Soil Biology & Biochemistry 40: 29602969.
  • Zaehle S, Friend AD, Friedlingstein P, Dentener F, Peylin P, Schulz M. 2010. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance. Global Biogeochemical Cycles 24: doi:10.1029/2009GB003522.
  • Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL. 1993. Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant and Soil 151: 105117.
  • Zanetti S, Hartwig UA, Luscher A, Hebeisen T, Frehner M, Fischer BU, Hendrey GR, Blum H, Nosberger J. 1996. Stimulation of symbiotic N-2 fixation in Trifolium repens L under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiology 112: 575583.