SEARCH

SEARCH BY CITATION

References

  • Acheré V, Faivre-Rampant P, Jeandroz S, Besnard G, Markussen T, Aragones A, Fladung M, Ritter E, Favre J-M. 2004. A full saturated linkage map of Picea abies including AFLP, SSR, ESTP, 5S rDNA and morphological markers. Theoretical and Applied Genetics 108: 16021613.
  • Bateman RM, Hilton J, Rudall PJ. 2011. Spatial separation and developmental divergence of male and female reproductive units in gymnosperms, and their relavance to the origin of the angiosperm flower. In: Wanntorp L, Ronse De Craene LP, eds. Flowers on the tree of life. Cambridge, UK: Cambridge University Press, 848.
  • Becker A, Kaufmann K, Freialdenhoven A, Vincent C, Li M-A, Saedler H, Theissen G. 2002. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Molecular Genetics and Genomics 266: 942950.
  • Becker A, Saedler H, Theissen G. 2003. Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon. Development Genes and Evolution 213: 567572.
  • Becker A, Theissen G. 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution 29: 464489.
  • Becker A, Winter KU, Meyer B, Saedler H, Theissen G. 2000. MADS-Box gene diversity in seed plants 300 million years ago. Molecular Biology and Evolution 17: 14251434.
  • Carlsbecker A, Sundström J, Tandre K, Englund M, Kvarnheden A, Johanson U, Engström P. 2003. The DAL10 gene from Norway spruce (Picea abies) belongs to a potentially gymnosperm-specific subclass of MADS-box genes and is specifically active in seed cones and pollen cones. Evolution & Development 5: 551561.
  • Carlsbecker A, Tandre K, Johanson U, Englund M, Engström P. 2004. The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). Plant Journal 40: 546557.
  • Chang S, Puryear J, Cairney J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11: 113116.
  • Clement-Westerhoff JA. 1988. Morphology and phylogeny of paleozoic conifers. New York, NY, USA: Columbia University Press.
  • Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353: 3137.
  • Cronk QCB, Bateman RM, Hawkins JA, eds. 2002. Developmental genetics and plant evolution. London, UK: Taylor & Francis.
  • Cronk QCB. 2009. Evolution in reverse gear: the molecular genetics of loss and reversal. Evolution: the molecular landscape. Cold Spring Harbor Symposia on Quantitative Biology LXXIV, 259266.
  • Dorca-Fornell C, Gregis V, Grandi V, Coupland G, Colombo L, Kater MM. 2011. The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems. Plant Journal 67: 10061017.
  • Englund M, Carlsbecker A, Engström P, Vergara-Silva F. 2011. Morphological ‘primary homology’ and expression of AG-subfamily MADS-box genes in pines, podocarps, and yews. Evolution & Development 13: 171181.
  • Florin R. 1951. Evolution of cordaites and conifers. Acta Horta Bergiani 15: 285388.
  • de Folter S, Shchennikova AV, Franken J, Busscher M, Baskar R, Grossniklaus U, Angenent GC, Immink RGH. 2006. A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant Journal 47: 934946.
  • Fries TM. 1890. Strödda bidrag till kännedomen om Skandinaviens barrträd. Botaniska Notiser 1: 250260.
  • Frohman MA, Dush MK, Martin GR. 1988. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. PNAS 85: 89989002.
  • Groth E, Tandre K, Engström P, Vergara-Silva F. 2011. AGAMOUS subfamily MADS-box genes and the evolution of seed cone morphology in Cupressaceae and Taxodiaceae. Evolution & Development 13: 159170.
  • Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696704.
  • Irish VF, Litt A. 2005. Flower development and evolution: gene duplication, diversification and redeployment. Current Opinion in Genetics & Development 15: 454460.
  • Jackson D. 1991. In situ hybridization in plants. In: Gurr SJ, McPherson MJ, Bowles DJ, eds. Molecular plant pathology, vol 1. A practical approach. London, UK: IRL Press, 63174.
  • Jager M, Hassanin A, Manuel M, Le Guyader H, Deutsch J. 2003. MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family. Molecular Biology and Evolution 20: 842854.
  • Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 12111225.
  • Koo SC, Bracko O, Park MS, Schwab R, Chun HJ, Park KM, Seo JS, Grbic V, Balasubramanian S, Schmid M et al. 2010. Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant Journal 62: 807816.
  • Lee J, Lee I. 2010. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany 61: 22472254.
  • Lenhard M, Bohnert A, Jürgens G, Laux T. 2001. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105: 805814.
  • Li H, Liang W, Jia R, Yin C, Zong J, Kong H, Zhang D. 2010. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Research 20: 299313.
  • Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D. 2001. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105: 793803.
  • Lovisetto A, Guzzo F, Tadiello A, Toffali K, Favretto A, Casadoro G. 2012. Molecular analyses of MADS-box genes trace back to gymnosperms the invention of fleshy fruits. Molecular Biology and Evolution 29: 409419.
  • Mathews S, Kramer EM. 2012. The evolution of reproductive structures in seed plants: a re-examination based on insights from developmental genetics. New Phytologist 194: 910923.
  • Mouradov A, Glassick T, Hamdorf B, Murphy L, Marla S, Yang Y, Teasdale R. 1998. Family of MADS-Box genes expressed early in male and female reproductive structures of monterey pine. Plant Physiology 117: 5562.
  • Nardmann J, Reisewitz P, Werr W. 2009. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. Molecular Biology and Evolution 26: 17451755.
  • Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L. 2002. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14: 24632479.
  • Nilsson L, Carlsbecker A, Sundås-Larsson A, Vahala T. 2007. APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues. Planta 225: 589602.
  • Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H. 2009. MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21: 30083025.
  • Owens JN, Molder M. 1979. Sexual reproduction of white spruce (Picea glauca). Canadian Journal of Botany 57: 152169.
  • Rijpkema AS, Vandenbussche M, Koes R, Heijmans K, Gerats T. 2010. Variations on a theme: changes in the floral ABCs in angiosperms. Seminars in Cell & Developmental Biology 21: 100107.
  • Rijpkema AS, Zethof J, Gerats T, Vandenbussche M. 2009. The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant Journal 60: 19.
  • Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19: 15721574.
  • Rutledge R, Regan S, Nicolas O, Fobert P, Côté C, Bosnich W, Kauffeldt C, Sunohara G, Séguin A, Stewart D. 1998. Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant Journal 15: 625634.
  • Scutt CP, Vinauger-Douard M, Fourquin C, Finet C, Dumas C. 2006. An evolutionary perspective on the regulation of carpel development. Journal of Experimental Botany 57: 21432152.
  • Singh H, Owens JN. 1981. Sexual reproduction of Engelmann spruce (Picea engelmannii). Canadian Journal of Botany 59: 793810.
  • Siriwardana NS, Lamb RS. 2012. The poetry of reproduction: the role of LEAFY in Arabidopsis thaliana flower formation. The International Journal of Developmental Biology 56: 207221.
  • Smaczniak C, Immink RGH, Angenent GC, Kaufmann K. 2012. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139: 30813098.
  • Stewart WN, Rothwell GW. 1993. Paleobotany and the evolution of plants. New York, NY, USA: Cambridge University Press.
  • Sundås A, Tandre K, Holmstedt E, Engström P. 1992. Differential gene expression during germination and after the induction of adventitious bud formation in Norway spruce embryos. Plant Molecular Biology 18: 713724.
  • Sundström J, Carlsbecker A, Svensson ME, Svenson M, Johanson U, Theissen G, Engström P. 1999. MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms. Developmental Genetics 25: 253266.
  • Sundström J, Engström P. 2002. Conifer reproductive development involves B-type MADS-box genes with distinct and different activities in male organ primordia. Plant Journal 31: 161169.
  • Tandre K, Albert VA, Sundås A, Engström P. 1995. Conifer homologues to genes that control floral development in angiosperms. Plant Molecular Biology 27: 6978.
  • Tandre K, Svenson M, Svensson ME, Engström P. 1998. Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant Journal 15: 615623.
  • Tapia-López R, García-Ponce B, Dubrovsky JG, Garay-Arroyo A, Pérez-Ruíz RV, Kim S-H, Acevedo F, Pelaz S, Alvarez-Buylla ER. 2008. An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiology 146: 11821192.
  • Taylor TN, Taylor EL, Krings M. 2009. Paleobotany: the biology and evolution of fossil plants. New York, NY, USA: Academic Press.
  • Uddenberg D, Reimegård J, Clapham D, Almqvist C, von Arnold S, Emanuelsson O, Sundström JF. 2013. Early cone setting in Picea abies acrocona is associated with increased transcriptional activity of a MADS box transcription factor. Plant Physiology 161: 813823.
  • Vázquez-Lobo A, Carlsbecker A, Vergara-Silva F, Alvarez-Buylla ER, Piñero D, Engström P. 2007. Characterization of the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of the conifer genera Picea, Podocarpus, and Taxus: implications for current evo-devo hypotheses for gymnosperms. Evolution & Development 9: 446459.
  • Wang Y-Q, Melzer R, Theissen G. 2010. Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of ‘floral quartets’. Plant Journal 64: 177190.
  • Winter KU, Becker A, Münster T, Kim JT, Saedler H, Theissen G. 1999. MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. PNAS 96: 73427347.
  • Würschum T, Gross-Hardt R, Laux T. 2006. APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. Plant Cell 18: 295307.
  • Zhang P, Tan HTW, Pwee K-H, Kumar PP. 2004. Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant Journal 37: 566577.