SEARCH

SEARCH BY CITATION

References

  • Adam L, Somerville SC. 1996. Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant Journal 9: 341356.
  • Albert M, Jehle AK, Lipschis M, Mueller K, Zeng Y, Felix G. 2010. Regulation of cell behaviour by plant receptor kinases: pattern recognition receptors as prototypical models. European Journal of Cell Biology 89: 200207.
  • Andersen-Nissen E, Smith KD, Strobe KL, Barrett SLR, Cookson BT, Logan SM, Aderem A. 2005. Evasion of Toll-like receptor 5 by flagellated bacteria. Proceedings of the National Academy of Sciences, USA 102: 92479252.
  • Ausubel FM. 2005. Are innate immune signaling pathways in plants and animals conserved? Nature Immunology 6: 973979.
  • Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, Cherkis K, Roach J, Grant SR, Jones CD, Dangl JL. 2011. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathogens 7: e1002132.
  • Bauer Z, Gómez-Gómez L, Boller T, Felix G. 2001. Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites. Journal of Biological Chemistry 276: 4566945676.
  • Bittel P, Robatzek S. 2007. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Current Opinion in Plant Biology 10: 335341.
  • Boller T, Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology 60: 379406.
  • Boudsocq M, Willmann MR, McCormac M, Lee H, Shan L, He P, Bush J, Cheng S-H, Sheen J. 2010. Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464: 418422.
  • Bull CT, Clarke CR, Cai R, Vinatzer BA, Jardini TM, Koike ST. 2011. Multilocus sequence typing of Pseudomonas syringae sensu lato confirms previously described genomospecies and permits rapid identification of P. syringae pv. coriandricola and P. syringae pv. apii causing bacterial leaf spot on parsley. Phytopathology 101: 847858.
  • Bull CT, Manceau C, Lydon J, Kong H, Vinatzer BA, Fischer-Le Saux M. 2010. Pseudomonas cannabina pv. cannabina pv. nov., and Pseudomonas cannabina pv. alisalensis (Cintas Koike and Bull, 2000) comb. nov., are members of the emended species Pseudomonas cannabina (ex Sutic & Dowson 1959) Gardan, Shafik, Belouin, Brosch, Grimont & Grimont 1999. Systematic and Applied Microbiology 33: 105115.
  • Cai R, Lewis J, Yan S, Liu H, Clarke CR, Campanile F, Almeida NF, Studholme DJ, Lindeberg M, Schneider D et al. 2011. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathogens 7: e1002130.
  • Chakravarthy S, Velasquez AC, Ekengren SK, Collmer A, Martin GB. 2010. Identification of Nicotiana benthamiana genes involved in pathogen-associated molecular pattern-triggered immunity. Molecular Plant–Microbe Interactions 23: 715726.
  • Che F-S, Nakajima Y, Tanaka N, Iwano M, Yoshida T, Takayama S, Kadota I, Isogai A. 2000. Flagellin from an incompatible strain of Pseudomonas avenae induces a resistance response in cultured rice cells. Journal of Biological Chemistry 275: 3234732356.
  • Cheng W, Munkvold KR, Gao H, Mathieu J, Schwizer S, Wang S, Yan Y-B, Wang J, Martin GB, Chai J. 2011. Structural analysis of Pseudomonas syringae AvrPtoB bound to host BAK1 reveals two similar kinase-interacting domains in a type III effector. Cell Host & Microbe 10: 616626.
  • Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G. 2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18: 465476.
  • Chinchilla D, Boller T, Robatzek S. 2007a. Flagellin signalling in plant immunity. In: Lambris JD, ed. Current topics in innate immunity. New York, NY, USA: Springer, 358371.
  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JDG, Felix G, Boller T. 2007b. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497500.
  • Chisholm ST, Coaker G, Day B, Staskawicz BJ. 2006. Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124: 803814.
  • Consortium TG. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635641.
  • Cunnac S, Chakravarthy S, Kvitko BH, Russell AB, Martin GB, Collmer A. 2011. Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae. Proceedings of the National Academy of Sciences, USA 108: 29752980.
  • Dong X, Mindrinos M, Davis KR, Ausubel FM. 1991. Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell 3: 6172.
  • Dunning FM, Sun W, Jansen KL, Helft L, Bent AF. 2007. Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception. Plant Cell 19: 32973313.
  • Felix G, Duran JD, Volko S, Boller T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal 18: 265276.
  • Göhre V, Spallek T, Häwker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield JW, Robatzek S. 2008. Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase avrptoB. Current Biology 18: 18241832.
  • Gómez-Gómez L, Boller T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell 5: 10031011.
  • Gómez-Gómez L, Felix G, Boller T. 1999. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant Journal 18: 277284.
  • Guttman DS, Vinatzer BA, Sarkar SF, Ranall MV, Kettler G, Greenberg JT. 2002. A functional screen for the Type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science 295: 17221726.
  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 10991103.
  • Hazelbauer GL, Mesibov RE, Adler J. 1969. Escherichia coli mutants defective in chemotaxis toward specific chemicals. Proceedings of the National Academy of Sciences, USA 64: 13001307.
  • Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC, Rathjen JP. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the National Academy of Sciences, USA 104: 1221712222.
  • Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444: 323329.
  • King EO, Ward MK, Raney DE. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. Journal of Laboratory Clinical Medicine 44: 301307.
  • Kofoed EM, Vance RE. 2011. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477: 592595.
  • Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M, Rallapalli G, Thomma BPHJ, Staskawicz B et al. 2010. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology 28: 365369.
  • Liu Y, Schiff M, Dinesh-Kumar SP. 2002. Virus-induced gene silencing in tomato. Plant Journal 31: 777786.
  • Martin GB. 2012. Suppression and activation of the plant immune system by Pseudomonas syringae effectors AvrPto and AvrPtoB. In: Martin F, Kamoun S, eds. Effectors in plant–microbe interactions. Oxford, UK: Wiley-Blackwell, 123154.
  • McCann HC, Nahal H, Thakur S, Guttman DS. 2012. Identification of innate immunity elicitors using molecular signatures of natural selection. Proceedings of the National Academy of Sciences, USA 109: 42154220.
  • Meindl T, Boller T, Felix G. 1998. The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. Plant Cell 10: 15611570.
  • Meindl T, Boller T, Felix G. 2000. The bacterial elicitor flagellin activates its receptor in tomato cells according to the address–message concept. Plant Cell 12: 17831794.
  • Melotto M, Underwood W, Koczan J, Nomura K, He SY. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969980.
  • Meng F, Altier C, Martin GB. 2013. Salmonella colonization activates the plant immune system and benefits from association with plant pathogenic bacteria. Environmental Microbiology. doi: 10.1111/1462-2920.12113.
  • Mueller K, Chinchilla D, Albert M, Jehle AK, Kalbacher H, Boller T, Felix G. 2012. Contamination risks in work with synthetic peptides: flg22 as an example of a pirate in commercial peptide preparations. Plant Cell 24:31933197.
  • Nover L, Kranz E, Scharf KD. 1982. Growth cycle of suspension cultures of Lycopersicon esculentum and Lycopersicon peruvianum. Biochemie und Physiologie der Pflanzen 177: 483499.
  • Pfund C, Tans-Kersten J, Dunning FM, Alonso JM, Ecker JR, Allen C, Bent AF. 2004. Flagellin is not a major defense elicitor in Ralstonia solanacearum cells or extracts applied to Arabidopsis thaliana. Molecular Plant–Microbe Interactions 17: 696706.
  • Rasmussen MW, Roux M, Petersen M, Mundy J. 2012. MAP kinase cascades in plant innate immunity. Frontiers in Plant Science. doi: 10.3389/fpls.2012.00169.
  • Robatzek S, Bittel P, Chinchilla D, Köchner P, Felix G, Shiu S-H, Boller T. 2007. Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Molecular Biology 64: 539547.
  • Robatzek S, Chinchilla D, Boller T. 2006. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes & Development 20: 537542.
  • Roux M, Zipfel C. 2012. Receptor kinase interactions: complexity of signalling in receptor-like kinases in plants. In: Tax F, Kemmerling B, eds. Receptor-like kinases in plants. Berlin, Heidelberg, Germany: Springer, 145172.
  • Schreiber KJ, Desveaux D. 2011. AlgW regulates multiple Pseudomonas syringae virulence strategies. Molecular Microbiology 80: 364377.
  • Segonzac C, Zipfel C. 2011. Activation of plant pattern-recognition receptors by bacteria. Current Opinion in Microbiology 14: 5461.
  • Shan L, He P, Li J, Heese A, Peck SC, Nürnberger T, Martin GB, Sheen J. 2008. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host & Microbe 4: 1727.
  • Shimizu R, Taguchi F, Marutani M, Mukaihara T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. 2003. The deltafliD mutant of Pseudomonas syringae pv. tabaci which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non-host tomato cells. Molecular Genetics and Genomics 269: 2130.
  • Sun W, Dunning FM, Pfund C, Weingarten R, Bent AF. (2006). Within-species flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2-dependent defenses. Plant Cell 18: 764779.
  • Taguchi F, Shimizu R, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. 2003. Post-translational modification of Flagellin determines the specificity of HR induction. Plant and Cell Physiology 44: 342349.
  • Takeuchi K, Taguchi F, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. 2003. Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity. Journal of Bacteriology 185: 66586665.
  • Vetter MM, He F, Kronholm I, Haweker H, Reymond M, Bergelson J, Robatzek S, de Meaux J. 2012. Flagellin perception varies quantitatively in Arabidopsis thaliana and its relatives. Molecular Biology and Evolution 29: 16551667.
  • Wei C-F, Hsu S-T, Deng W-L, Wen Y-D, Huang H-C. 2012. Plant innate immunity induced by flagellin suppresses the hypersensitive response in non-host plants elicited by Pseudomonas syringae pv. averrhoi. PLoS ONE 7: e41056.
  • Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J et al. 2008. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Current Biology 18: 7480.
  • Yonekura K, Maki-Yonekura S, Namba K. 2003. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424: 643650.
  • Yoon S-I, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA. (2012). Structural basis of TLR5-Flagellin recognition and signaling. Science 335: 859864.
  • Zeng W, He SY. 2010. A prominent role of the Flagellin receptor FLS2 in mediating stomatal response to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. Plant Physiology 153: 11881198.
  • Zhao Y, Yang J, Shi J, Gong Y-N, Lu Q, Xu H, Liu L, Shao F. 2011. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477: 596600.
  • Zipfel C, Felix G. 2005. Plants and animals: a different taste for microbes? Current Opinion in Plant Biology 8: 353360.
  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764767.