SEARCH

SEARCH BY CITATION

References

  • Alexis MA, Rasse DP, Knicker H, Anquetil C, Rumpel C. 2012. Evolution of soil organic matter after prescribed fire: a 20-year chronosequence. Geoderma 189–190: 98107.
  • Block CE, Knoepp JD, Fraterrigo JM. 2013. Interactive effects of disturbance and nitrogen availability on phosphorus dynamics of southern Appalachian forests. Biogeochemistry 112: 329342.
  • Brown ALP, Day FP, Hungate BA, Drake BG, Hinkle CR. 2007. Root biomass and nutrient dynamics in a scrub-oak ecosystem under the influence of elevated atmospheric CO2. Plant and Soil 292: 219232.
  • Brown ALP, Day FP, Stover DB. 2009. Fine root biomass estimates from minirhizotron imagery in a shrub ecosystem exposed to elevated CO2. Plant and Soil 317: 145153.
  • Brown JR, Blankinship JC, Niboyet A, van Groenigen KJ, Dijkstra P, Le Roux X, Leadley PW, Hungate BA. 2012. Effects of multiple global change treatments on soil N2O fluxes. Biogeochemistry 109: 85100.
  • Calfapietra C, De Angelis P, Gielen B, Lukac M, Moscatelli MC, Avino G, Lagomarsino A, Polle A, Ceulemans R, Mugnozza GS et al. 2007. Increased nitrogen-use efficiency of a short-rotation poplar plantation in elevated CO2 concentration. Tree Physiology 27: 11531163.
  • Carney KM, Hungate BA, Drake BG, Megonigal JP. 2007. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proceedings of the National Academy of Sciences, USA 104: 49904995.
  • Clarke PJ, Lawes MJ, Midgley JJ, Lamont BB, Ojeda F, Burrows GE, Enright NJ, Knox KJE. 2013. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytologist 197: 1935.
  • Day FP, Schroeder RE, Stover DB, Brown ALP, Butnor JR, Dilustro J, Hungate BA, Dijkstra P, Duval BD, Seiler TJ et al. 2013. The effects of 11 yr of CO2 enrichment on roots in a Florida scrub-oak ecosystem. New Phytologist. doi: 10.1111/nph.12246.
  • Day FP, Stover DB, Pagel AL, Hungate BA, Dilustro JJ, Herbert BT, Drake BG, Hinkle CR. 2006. Rapid root closure after fire limits fine root responses to elevated atmospheric CO2 in a scrub oak ecosystem in central Florida, USA. Global Change Biology 12: 10471053.
  • Di Iorio A, Montagnoli A, Scippa GS, Chiatante D. 2011. Fine root growth of Quercus pubescens seedlings after drought stress and fire disturbance. Environmental and Experimental Botany 74: 272279.
  • Dijkstra P, Hymus G, Colavito D, Vieglais DA, Cundari CM, Johnson DP, Hungate BA, Hinkle CR, Drake BG. 2002. Elevated atmospheric CO2 stimulates aboveground biomass in a fire-regenerated scrub-oak ecosystem. Global Change Biology 8: 90103.
  • Dilustro JJ, Day FP, Drake BG, Hinkle CR. 2002. Abundance, production and mortality of fine roots under elevated atmospheric CO2 in an oak-scrub ecosystem. Environmental and Experimental Botany 48: 149159.
  • Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML et al. 2011. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecology Letters 14: 349357.
  • Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA, Field CB. 2005. Responses of grassland production to single and multiple global environmental changes. PLoS Biology 3: 18291837.
  • Field CB. 1999. Diverse controls on carbon storage under elevated CO2: toward a synthesis. In: Luo YM, Mooney HA, eds. Carbon dioxide and environmental stress. San Diego, CA, USA: Academic Press, 373391.
  • Field CB, Chapin FS, Matson PA, Mooney HA. 1992. Responses of terrestrial ecosystems to the changing atmosphere – a resource-based approach. Annual Review of Ecology and Systematics 23: 201235.
  • Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME et al. 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, USA 104: 1401414019.
  • de Graaff M-A, van Groenigen K-J, Six J, Hungate B, van Kessel C. 2006. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biology 12: 20772091.
  • Guerin DN. 1993. Oak dome clonal structure and fire ecology in a Florida longleaf pine dominated community. Bulletin of the Torrey Botanical Club 120: 107114.
  • Hagedorn F, Maurer S, Bucher JB, Siegwolf RTW. 2005. Immobilization, stabilization and remobilization of nitrogen in forest soils at elevated CO2: a 15N and 13C tracer study. Global Change Biology 11: 18161827.
  • Henry HAL, Chiariello NR, Vitousek PM, Mooney HA, Field CB. 2006. Interactive effects of fire, elevated carbon dioxide, nitrogen deposition, and precipitation on a California annual grassland. Ecosystems 9: 10661075.
  • Housman DC, Naumburg E, Huxman TE, Charlet TN, Nowak RS, Smith SD. 2006. Increases in desert shrub productivity under elevated carbon dioxide vary with water availability. Ecosystems 9: 374385.
  • Hungate BA, Dijkstra P, Wu Z, Duval BD, Day FP, Johnson DW, Megonigal JP, Brown ALP, Garland JL. 2013. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland. New Phytologist. doi: 10.1111/nph.12333.
  • Hungate BA, Johnson DW, Dijkstra P, Hymus G, Stiling P, Megonigal JP, Pagel AL, Moan JL, Day F, Li JH et al. 2006. Nitrogen cycling during seven years of atmospheric CO2 enrichment in a scrub oak woodland. Ecology 87: 2640.
  • Hymus GJ, Johnson DP, Dore S, Anderson HP, Hinkle CR, Drake BG. 2003. Effects of elevated atmospheric CO2 on net ecosystem CO2 exchange of a scrub-oak ecosystem. Global Change Biology 9: 18021812.
  • Johnson DW, Hoylman AM, Ball JT, Walker RF. 2006. Ponderosa pine responses to elevated CO2 and nitrogen fertilization. Biogeochemistry 77: 157175.
  • Johnson DW, Hungate BA, Dijkstra P, Hymus G, Hinkle CR, Stiling P, Drake BG. 2003. The effects of elevated CO2 on nutrient distribution in a fire-adapted scrub oak forest. Ecological Applications 13: 13881399.
  • Körner C. 2006. Plant CO2₂ responses: an issue of definition, time and resource supply. New Phytologist 172: 393411.
  • Langley JA, Dijkstra P, Drake BG, Hungate BA. 2003. Ectomycorrhizal colonization, biomass, and production in a regenerating scrub oak forest in response to elevated CO2. Ecosystems 6: 424430.
  • Langley JA, Drake B, Hungate BA. 2002. Extensive belowground carbon storage supports roots and mycorrhizae in regenerating scrub oaks. Oecologia 131: 542548.
  • Langley JA, McKinley DC, Wolf AA, Hungate BA, Drake BG, Megonigal JP. 2009. Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO2. Soil Biology and Biochemistry 41: 5460.
  • Leuzinger S, Luo Y, Beier C, Dieleman W, Vicca S, Koerner C. 2011. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends in Ecology & Evolution 26: 236241.
  • Li J, Powell TL, Seiler TJ, Johnson DP, Anderson HP, Bracho R, Hungate BA, Hinkle CR, Drake BG. 2007. Impacts of Hurricane Frances on Florida scrub-oak ecosystem processes: defoliation, net CO2 exchange and interactions with elevated CO2. Global Change Biology 13: 11011113.
  • Luo Y, Su B, Currie WS, Dukes JS, Finzi AC, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ et al. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54: 731739.
  • Mailander JL. 1990. Climate of the Kennedy Space Center and Vicinity – US Aeronautics and Space Administration Technical Memorandum 103498.
  • Martin A, Diaz-Ravina M, Carballas T. 2012. Short- and medium-term evolution of soil properties in Atlantic forest ecosystems affected by wildfires. Land Degradation & Development 23: 427439.
  • Matson PA, Vitousek PM. 1981. Nitrogen mineralization and nitrification potentials following clearcutting in the Hoosier-National Forest, Indiana. Forest Science 27: 781791.
  • McKinley DC, Romero JC, Hungate BA, Drake BG, Megonigal JP. 2009. Does deep soil N availability sustain long-term ecosystem responses to elevated CO2? Global Change Biology 15: 20352048.
  • Michalzik B, Martin S. 2013. Effects of experimental duff fires on C, N and P fluxes into the mineral soil at a coniferous and broadleaf forest site. Geoderma 197: 169176.
  • Newingham BA, Vanier C, Charlet T, Ogle K, Smith SD, Nowak RS. 2013. No cumulative effect of ten years of elevated CO2 on perennial plant biomass components in the Mojave Desert. Global Change Biology 19: 21682181.
  • Niboyet A, Brown JR, Dijkstra P, Blankinship JC, Leadley PW, Le Roux X, Barthes L, Barnard RL, Field CB, Hungate BA. 2011. Global change could amplify fire effects on soil greenhouse gas emissions. PLoS ONE 6: e20105.
  • Niklaus PA, Körner C. 2004. Synthesis of 6 year CO2 enrichment study: interactions between nutrient and hydrological cycles and soil processes. Ecological Society of America Annual Meeting Abstracts 89: 373374.
  • Norby RJ, Delucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJ, Ceulemans R et al. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences, USA 102: 1805218056.
  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE. 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences, USA 107: 1936819373.
  • Owensby CE, Ham JM, Knapp AK, Auen LM. 1999. Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Global Change Biology 5: 497506.
  • Rasse DP, Peresta G, Drake BG. 2005. Seventeen years of elevated CO2 exposure in a Chesapeake Bay Wetland: sustained but contrasting responses of plant growth and CO2 uptake. Global Change Biology 11: 369377.
  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J. 2006a. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440: 922925.
  • Reich PB, Hungate BA, Luo Y. 2006b. Carbon–nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution, and Systematics 37: 611636.
  • Reich PBH, Hobbie SE. 2012. Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nature Climate Change 1: 346347.
  • Schäppi B, Körner C. 1996. Growth responses of an alpine grassland to elevated CO2. Oecologia 105: 4352.
  • Schmalzer PA, Hinkle CR. 1992. Recovery of oak-saw palmetto scrub after fire. Castanea 57: 158173.
  • Seiler TJ, Rasse DP, Li J, Dijkstra P, Anderson HP, Johnson DP, Powell TL, Hungate BA, Hinkle CR, Drake BG. 2009. Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11 years of CO2 enrichment in a Florida scrub-oak ecosystem. Global Change Biology 15: 356367.
  • Smith E. 1999. Atlantic and East Coast hurricanes 1900–98: a frequency and intensity study for the twenty-first century. Bulletin of the American Meteorological Society 80: 27172720.
  • Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS. 2000. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408: 7982.
  • Sousa WP. 1984. The role of disturbance in natural communities. Annual Review of Ecology and Systematics 15: 353391.
  • Stiling P, Moon D, Rossi A, Hungate BA, Drake B. 2009. Seeing the forest for the trees: long-term exposure to elevated CO2 increases some herbivore densities. Global Change Biology 15: 18951902.
  • Stover DB, Day FP, Butnor JR, Drake BG. 2007. Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar. Ecology 88: 13281334.
  • Stover DB, Day FP, Drake BG, Hinkle CR. 2010. The long-term effects of CO2 enrichment on fine root productivity, mortality, and survivorship in a scrub-oak ecosystem at Kennedy Space Center, Florida, USA. Environmental and Experimental Botany 69: 214222.
  • Strand AE, Pritchard SG, McCormack ML, Davis MA, Oren R. 2008. Irreconcilable differences: fine-root life spans and soil carbon persistence. Science 319: 456458.
  • Wang YP, Houlton BZ, Field CB. 2007.A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochemical Cycles 21, GB1018, doi: 10.1029/2006GB002797.
  • Webber HJ. 1935. The Florida scrub, a fire-fighting association. American Journal of Botany 22: 344361.
  • Zak DR, Pregitzer KS, Kubiske ME, Burton AJ. 2011. Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2. Ecology Letters 14: 12201226.
  • Zanetti S, Hartwig UA. 1997. Symbiotic N2 fixation increases under elevated atmospheric pCO2 in the field. Acta Oecologica-International Journal of Ecology 18: 285290.