SEARCH

SEARCH BY CITATION

References

  • Abuzinadah R, Finlay R, Read D. 1986. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants II. Utilization of protein by mycorrhizal plants of Pinus contorta. New Phytologist 103: 495506.
  • Abuzinadah RA, Read DJ. 1986. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytologist 103: 481493.
  • Agerer R. 2001. Exploration types of ectomycorrhizae. Mycorrhiza 11: 107114.
  • Boddy L. 1999. Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia 91: 1332.
  • Brownlee C, Duddridge J, Malibari A, Read D. 1983. The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways. Plant and Soil 43: 433443.
  • Buée M, Courty PE, Mignot D, Garbaye J. 2007. Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biology and Biochemistry 39: 19471955.
  • Butler MJ, Day AW. 1998. Fungal melanins: a review. Canadian Journal of Microbiology 44: 11151136.
  • Cairney JWG. 1992. Translocation of solutes in ectomycorrhizal and saprotrophic rhizomorphs. Mycological Research 96: 135141.
  • Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339: 16151618.
  • Coleman M, Bledsoe C, Lopushinsky W. 1989. Pure culture response of ectomycorrhizal fungi to imposed water stress. Canadian Journal of Botany 67: 2939.
  • Dahlberg A, Jonsson L, Nylund J-E. 1997. Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Canadian Journal of Botany 75: 13231335.
  • Falkengren-Grerup U. 1995. Differences in the preference of ammonium and nitrate in vascular plants. Oecologia 102: 305311.
  • Fernandez CW, McCormack ML, Hill JM, Pritchard SG, Koide RT. 2013. On the persistence of Cenococcum geophilum mycorrhizas and its implications for forest carbon and nutrient cycles. Soil Biology and Biochemistry 65: 141143.
  • Finlay RD, Frostegard A, Sonnerfeldt AM. 1992. Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytologist 120: 105115.
  • Fitter AH. 1994. Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. In: Caldwell MM, Pearcy RW, eds. Exploitation of environmental heterogeneity by plants, ecophysiological processes above- and belowground. San Diego, CA, USA: Academic Press, 305323.
  • Fogel R, Hunt G. 1983. Contribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas-fir ecosystem. Canadian Journal of Forest Research 13: 219232.
  • Fransson P. 2012. Elevated CO2 impacts ectomycorrhiza-mediated forest soil carbon flow: fungal biomass production, respiration, and exudation. Fungal Ecology 5: 8598.
  • Gadd GM, Derome L. 1988. Biosorption of copper by fungal melanin. Applied Microbiology and Biotechnology 29: 610617.
  • Gessler A, Schneider S, Von Sengbusch D, Weber P, Hanemann U, Huber C, Rothe A, Kreutzer K, Rennenberg H. 1998. Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytologist 138: 275285.
  • Godbold DL, Berntson GM, Bazzaz FA. 1997. Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO2. New Phytologist 137: 433440.
  • Hillebrand H, Matthiessen B. 2009. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters 12: 14051419.
  • Hobbie EA. 2006. Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87: 563569.
  • Hobbie SE. 1992. Effects of plant species on nutrient cycling. Trends in Ecology and Evolution 7: 336339.
  • Johnson D, Krsek M, Wellington EMH, Stott AW, Cole L, Bardgett RD, Read DJ, Leake JR. 2005. Soil invertebrates disrupt carbon flow through fungal networks. Science 309: 1047.
  • Kielland K. 1994. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75: 23732383.
  • Kogej T, Gorbushina AA, Gunde-Cimerman N. 2006. Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma. Mycological Research 110: 713724.
  • Koide RT, Malcolm GM. 2009. N concentration controls decomposition rates of different strains of ectomycorrhizal fungi. Fungal Ecology 2: 197202.
  • Koide RT, Sharda JN, Herr JR, Malcolm GM. 2006. Ectomycorrhizal fungi and the biotrophy – saprotrophy continuum. New Phytologist 178: 230233.
  • Koide RT, Wu T. 2003. Ectomycorrhizas and retarded decomposition in a Pinus resinosa plantation. New Phytologist 158: 401407.
  • Lavorel S, Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545556.
  • Lilleskov E, Fahey T, Horton T. 2002a. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83: 104115.
  • Lilleskov E, Hobbie EA, Fahey TJ. 2002b. Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytologist 154: 219231.
  • Lilleskov EA, Hobbie EA, Horton TR. 2011. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecology 4: 174183.
  • Lloyd J, Farquhar G. 1996. The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentration and their interaction with soil nutrient status. I. General principles and forest ecosystems. Functional Ecology 10: 432.
  • Maag M, Vinther F. 1996. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Applied Soil Ecology 4: 514.
  • Malik K, Haider K. 1982. Decomposition of 14C-labeled melanoid fungal residues in a marginally sodic soil. Soil Biology and Biochemistry 14: 457460.
  • Mexal J, Reid CPP. 1973. The growth of selected mycorrhizal fungi in response to induced water stress. Canadian Journal of Botany 51: 15791588.
  • Meyer FH. 1964. The role of the fungus Cenococcum graniforme (Sow.) Ferd. et Winge in the formation of mor. In: Jongerius EA, ed. Soil microbiology. Amsterdam, the Netherlands: Elsevier, 2331.
  • Moore A. 1986. Temperature and moisture dependence of decomposition rates of hardwood and coniferous leaf litter. Soil Biology and Biochemistry 18: 427435.
  • Näsholm T, Högberg P, Franklin O, Metcalfe D, Kreel SG, Campbell C, Hurry V, Linder S, Högberg MN. 2013. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytologist 198: 214221.
  • Orwin KH, Kirschbaum MUF, St John MG, Dickie IA. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecology Letters 14: 493502.
  • Peay KG, Kennedy PG, Bruns TD. 2011. Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation? Fungal Ecology 4: 233240.
  • Persson T, Ruderbeck A, Jussy JH, Colin-Belgrand M, Priemé A, Dambrine E, Karlsson PS, Sjöberg RM. 2000. Soil nitrogen turnover – mineralization, nitrification and denitrification in European forest soils. In: Schulze ED, ed. Carbon and nitrogen cycling in European forest ecosystems. Heidelberg, Germany: Springer, 297340.
  • Pigott C. 2006. Survival of mycorrhiza formed by Cenococcum geophilum FR. in dry soils. New Phytologist 92: 513517.
  • Querejeta J, Egerton-Warburton LM, Allen MF. 2009. Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology 90: 649662.
  • Read DJ, Leake JR, Perez-Moreno J. 2004. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany 1263: 12431263.
  • Scott AC, Pinter N, Collinson ME, Hardiman M, Anderson RS, Brain APR, Smith FY, Marone F, Stampanoni M. 2010. Fungus, not comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas “impact layer”. Geophysical Research Letters 37: L14302.
  • Singaravelan N, Grishkan I, Beharav A, Wakamatsu K, Ito S, Nevo E. 2008. Adaptive melanin response of the soil fungus Aspergillus niger to UV radiation stress at “Evolution Canyon”, Mount Carmel, Israel. PLoS ONE 3: e2993.
  • Stark JM. 1994. Causes of soil nutrient heterogeneity at different scales. In: Caldwell MM, Pearcy RW, eds. Exploitation of environmental heterogeneity by plants, ecophysiological processes above- and belowground. San Diego, CA, USA: Academic Press, 255284.
  • Swaty RL, Deckert RJ, Whitham TG, Gehring CA. 2004. Ectomycorrhizal abundance and community composition shifts with drought: predictions from tree rings. Ecology 85: 10721084.
  • Taylor A, Martin F, Read D. 2000. Fungal diversity in ectomycorrhizal communities of Norway Spruce (Picea abies (L.) Karst.) and Beech (Fagus sylvatica L.) along north-south transects in Europe. In: Schulze ED, ed. Carbon and nitrogen cycling in European forest ecosystems. Heidelberg, Germany: Springer, 343365.
  • Tibbett M, Sanders F, Minto S, Dowell M, Cairney J. 1998. Utilization of organic nitrogen by ectomycorrhizal fungi (Hebeloma spp.) of arctic and temperate origin. Mycological Research 102: 15251532.
  • Treseder KK, Allen MF, Ruess RW, Pregitzer KS, Hendrick RL. 2005. Lifespans of fungal rhizomorphs under nitrogen fertilization in a pinyon-juniper woodland. Plant and Soil 270: 249255.
  • Unestam T, Sun YP. 1995. Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Mycorrhiza 5: 301311.
  • Wallander H, Johansson U, Sterkenburg E, Durling MB, Lindahl BD. 2010. Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytologist 187: 11241134.
  • Watanabe M, Sato H, Matsuzaki H, Kobayashi T, Sakagami N, Maejima Y, Ohta H, Fujitake N, Syuntaro H. 2007. 14C ages and δ13C of sclerotium grains found in forest soils. Soil Science and Plant Nutrition 53: 125131.
  • Weigt RB, Raidl S, Verma R, Agerer R. 2012. Exploration type-specific standard values of extramatrical mycelium- a step towards quantifying ectomycorrhizal space occupation and biomass in natural soil. Mycological Progress 11: 287297.