SEARCH

SEARCH BY CITATION

References

  • Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165: 351372.
  • Ainsworth EA, Rogers A. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell & Environment 30: 258270.
  • Bartlett MK, Scoffoni C, Sack L. 2012. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters 15: 393405.
  • Berry JA, Beerling DJ, Franks PJ. 2010. Stomata: key players in the earth system, past and present. Current Opinion in Plant Biology 13: 232239.
  • Buckley TN. 2005. The control of stomata by water balance (Tansley Review). New Phytologist 168: 275292.
  • Buckley TN. 2008. The role of stomatal acclimation in modelling tree adaptation to high CO2. Journal of Experimental Botany 59: 19511961.
  • Buckley TN, Miller JM, Farquhar GD. 2002. The mathematics of linked optimisation for nitrogen and water use in a canopy. Silva Fennica 36: 639669.
  • Buckley TN, Mott KA. 2013. Modeling stomatal conductance in response to environmental factors. Plant, Cell & Environment 36: 16911699.
  • Buckley TN, Roberts DW. 2006. DESPOT, a process-based tree growth model that allocates carbon to maximize carbon gain. Tree Physiology 26: 129144.
  • Cowan IR. 1982. Water use and optimization of carbon assimilation. In: Lange OL, Nobel CB, Osmond CB, Ziegler H, eds. Encyclopedia of plant physiology. 12B. Physiological plant ecology. Berlin, Germany: Springer-Verlag, 589630.
  • Cowan I. 2002. Fit, fitter, fittest; where does optimisation fit in? Silva Fennica 36: 745754.
  • Cowan IR, Farquhar GD. 1977. Stomatal function in relation to leaf metabolism and environment. Symposium of the Society for Experimental Biology 31: 471505.
  • Damour G, Simonneau T, Cochard H, Urban L. 2010. An overview of models of stomatal conductance at the leaf level. Plant, Cell & Environment 33: 14191438.
  • Doheny-Adams T, Hunt L, Franks PJ, Beerling DJ, Gray JE. 2012. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 547555.
  • Franks PJ, Beerling DJ. 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences, USA 106: 1034310347.
  • Givnish TJ. 1986. Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration. In: Givnish TJ, ed. On the economy of plant form and function. Cambridge, UK: Cambridge University Press, 171213.
  • Hari P, Mäkelä A, Korpilahti E, Holmberg M. 1986. Optimal control of gas exchange. Tree Physiology 2: 169175.
  • Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving environmental change. Nature 424: 901908.
  • Katul G, Manzoni S, Palmroth S, Oren R. 2010. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Annals of Botany 105: 431442.
  • Katul GG, Palmroth S, Oren RAM. 2009. Leaf stomatal responses to vapour pressure deficit under current and CO2-enriched atmosphere explained by the economics of gas exchange. Plant, Cell & Environment 32: 968979.
  • Kirschbaum MU. 2011. Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiology 155: 117124.
  • Konrad W, Roth-Nebelsick A, Grein M. 2008. Modelling of stomatal density response to atmospheric CO2. Journal of Theoretical Biology 253: 638658.
  • Lammertsma EI, de Boer HJ, Dekker SC, Dilcher DL, Lotter AF, Wagner-Cremer F. 2011. Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proceedings of the National Academy of Sciences, USA 108: 40354040.
  • Launiainen S, Katul GG, Kolari P, Vesala T, Hari P. 2011. Empirical and optimal stomatal controls on leaf and ecosystem level CO2 and H2O exchange rates. Agricultural and Forest Meteorology 151: 16721689.
  • Lloyd J, Farquhar GD. 1994. 13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia 99: 201215.
  • Mäkelä A, Berninger F, Hari P. 1996. Optimal control of gas exchange during drought: theoretical analysis. Annals of Botany 77: 461467.
  • Manzoni S, Katul G, Fay PA, Polley HW, Porporato A. 2011a. Modeling the vegetation–atmosphere carbon dioxide and water vapor interactions along a controlled CO2 gradient. Ecological Modelling 222: 653665.
  • Manzoni S, Vico G, Katul G, Fay PA, Polley W, Palmroth S, Porporato A. 2011b. Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Functional Ecology 25: 456467.
  • Medlyn BE, Duursma RA, De Kauwe MG, Prentice IC. 2013. The optimal stomatal response to atmospheric CO2 concentration: alternative solutions, alternative interpretations. Agricultural and Forest Meteorology. doi: 10.1016/j.agrformet.2013.04.019.
  • Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, De Angelis P, Freeman M, Wingate L. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology 17: 21342144.
  • Morison JIL. 1998. Stomatal response to increased CO2 concentration. Journal of Experimental Botany 49: 443452.
  • Palmroth S, Katul GG, Maier CA, Ward E, Manzoni S, Vico G. 2013. On the complementary relationship between marginal nitrogen and water-use efficiencies among Pinus taeda leaves grown under ambient and CO2-enriched environments. Annals of Botany 111: 467477.
  • Pfautsch S, Adams MA. 2012. Water flux of Eucalyptus regnans: defying summer drought and a record heatwave in 2009. Oecologia 172: 317326.
  • Sanders GJ, Arndt SK. 2012. Osmotic adjustment under drought conditions. In: Aroca R, ed. Plant responses to drought stress. Berlin, Germany: Springer, 199229.
  • Saxe H, Ellsworth DS, Heath J. 1998. Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist 139: 395436.
  • Scholz FG, Phillips NG, Bucci SJ, Meinzer FC, Goldstein G. 2011. Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size. In: Meinzer FC, Lachenbruch B, Dawson TE, eds. Size- and age-related changes in tree structure and function. Dordrecht, the Netherlands: Springer, 341361.
  • Schymanski SJ, Roderick ML, Sivapalan M, Hutley LB, Beringer J. 2008. A canopy-scale test of the optimal water-use hypothesis. Plant, Cell & Environment 31: 97111.
  • Vico G, Manzoni S, Palmroth S, Weih M, Katul G. 2013. A perspective on optimal leaf stomatal conductance under CO2 and light co-limitations. Agricultural and Forest Meteorology. doi: 10.1016/j.agrformet.2013.07.005.
  • Volpe V, Manzoni S, Marani M, Katul G. 2011. Leaf conductance and carbon gain under salt-stressed conditions. Journal of Geophysical Research: Biogeosciences 116: G04035.
  • Wang D, Heckathorn SA, Wang X, Philpott SM. 2012. A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169: 113.
  • Way DA, Oren R, Kim H-S, Katul GG. 2011. How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures. Journal of Geophysical Research: Biogeosciences 116: G04031.