SEARCH

SEARCH BY CITATION

References

  • Banaei-Moghaddam AM, Schubert V, Kumke K, Weiss O, Klemme S, Nagaki K, Macas J, Gonzalez-Sanchez M, Heredia V, Gomez-Revilla D et al. 2012. Nondisjunction in favor of a chromosome: the mechanism of Rye B Chromosome drive during pollen mitosis. Plant Cell 24: 41244134.
  • Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R. 2006. Deletion mapping of genetic regions associated with apomixis in Hieracium. Proceedings of the National Academy of Sciences, USA 103: 18 65018 655.
  • Conner JA, Gunawan G, Ozias-Akins P. 2013. Recombination within the apospory specific genomic region leads to the uncoupling of apomixis components in Cenchrus ciliaris. Planta 238: 5163.
  • Fehrer J, Gemeinholzer B, Chrtek J Jr, Bräutigam S. 2007a. Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Molecular Phylogenetics and Evolution 42: 347361.
  • Fehrer J, Krahulcová A, Krahulec F, Chrtek J Jr, Rosenbaumová R, Bräutigam S. 2007b. Evolutionary aspects in Hieracium subgenus Pilosella. In: Hörandl E, Grossniklaus U, van Dijk P, Sharbel T, eds. Apomixis: evolution, mechanisms and perspectives. Königstein, Germany: Koeltz, 359390.
  • Grimanelli D, Leblanc O, Espinosa E, Perotti E, González De León D, Savidan Y. 1998. Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or several genes? Heredity 80: 3339.
  • Koltunow AM, Grossniklaus U. 2003. Apomixis: a developmental perspective. Annual Review of Plant Biology 54: 547574.
  • Koltunow AM, Johnson SD, Bicknell RA. 1998. Sexual and apomictic development in Hieracium. Sexual Plant Reproduction 11: 213230.
  • Koltunow AM, Johnson SD, Bicknell RA. 2000. Apomixis is not developmentally conserved in related, genetically characterized Hieracium plants of varying ploidy. Sexual Plant Reproduction 12: 253266.
  • Koltunow AMG, Johnson SD, Rodrigues JCM, Okada T, Hu YK, Tsuchiya T, Wilson S, Fletcher P, Ito K, Suzuki G et al. 2011. Sexual reproduction is the default mode in apomictic Hieracium subgenus Pilosella, in which two dominant loci function to enable apomixis. Plant Journal 66: 890902.
  • Mukai Y, Endo TR, Gill BS. 1990. Physical mapping of the 5s tibosomal-RNA multigene family in common wheat. Journal of Heredity 81: 290295.
  • Ogawa D, Johnson SD, Henderson ST, Koltunow AM. 2013. Genetic separation of autonomous endosperm formation (AutE) from the two other components of apomixis in Hieracium. Plant Reproduction 26: 113123.
  • Okada T, Ito K, Johnson SD, Oelkers K, Suzuki G, Houben A, Mukai Y, Koltunow AM. 2011. Chromosomes carrying meiotic avoidance loci in three apomictic eudicot Hieracium subgenus Pilosella species share structural features with two monocot apomicts. Plant Physiology 157: 13271341.
  • Ozias-Akins P, Roche D, Hanna WW. 1998. Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proceedings of the National Academy of Sciences, USA 95: 51275132.
  • Ozias-Akins P, Van Dijk PJ. 2007. Mendelian genetics of apomixis in plants. Annual Review of Genetics 41: 509537.
  • Pupilli F, Barcaccia G. 2012. Cloning plants by seeds: inheritance models and candidate genes to increase fundamental knowledge for engineering apomixis in sexual crops. Journal of Biotechnology 159: 291311.
  • Pupilli F, Labombarda P, Caceres ME, Quarín CL, Arcioni S. 2001. The chromosome segment related to apomixis in Paspalum simplex is homoeologous to the telomeric region of the long arm of rice chromosome 12. Molecular Breeding 8: 5361.
  • Roche D, Cong PS, Chen ZB, Hanna WW, Gustine DL, Sherwood RT, Ozias-Akins P. 1999. An apospory-specific genomic region is conserved between Buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen. Plant Journal 19: 203208.
  • SanMiguel P, Bennetzen JL. 1998. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annals of Botany 82: 3744.
  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, MelakeBerhan A, Springer PS, Edwards KJ, Lee M, Avramova Z et al. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765768.
  • Sherwood RT, Berg CC, Young BA. 1994. Inheritance of apospory in Buffelgrass. Crop Science 34: 14901494.
  • Spillane C, Curtis MD, Grossniklaus U. 2004. Apomixis technology development – virgin births in farmers' fields? Nature Biotechnology 22: 687691.
  • Touil N, Elhajouji A, Thierens H, Kirsch-Volders M. 2000. Analysis of chromosome loss and chromosome segregation in cytokinesis-blocked human lymphocytes: non-disjunction is the prevalent mistake in chromosome segregation produced by low dose exposure to ionizing radiation. Mutagenesis 15: 17.
  • Tucker MR, Koltunow AMG. 2009. Sexual and asexual (apomictic) seed development in flowering plants: molecular, morphological and evolutionary relationships. Functional Plant Biology 36: 490504.
  • Tucker MR, Okada T, Johnson SD, Takaiwa F, Koltunow AMG. 2012. Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium. Journal of Experimental Botany 63: 32293241.
  • Vizir IY, Mulligan BJ. 1999. Genetics of gamma-irradiation-induced mutations in Arabidopsis thaliana: large chromosomal deletions can be rescued through the fertilization of diploid eggs. Journal of Heredity 90: 412417.