SEARCH

SEARCH BY CITATION

References

  • Bachhawat AK, Ghosh S. 1987. Iron transport in Azospirillum brasilense – role of the siderophore spirilobactin. Journal of General Microbiology 133: 17591765.
  • Baldani VLD, Alvarez MA, Baldani JI, Döbereiner J. 1986. Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant and Soil 90: 3546.
  • Barash I, Manulis-Sasson S. 2009. Recent evolution of bacterial pathogens: the gall-forming Pantoea agglomerans case. Annual Review of Phytopathology 47: 133152.
  • Bashan Y, de-Bashan LE. 2010. How the plant growth-promoting bacterium Azospirillum promotes plant growth – a critical assessment. Advances in Agronomy 108: 77136.
  • Bashan Y, Holguin G. 1995. Interroot movement of Azospirillum brasilense and subsequent root colonization of crop and weed seedlings growing in soil. Microbial Ecology 29: 269281.
  • Battke F, Symons S, Nieselt K. 2010. Mayday – integrative analysis for expression data. BMC Bioinformatics 11: 121.
  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK. 2001. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiology 126: 524535.
  • Bulgarelli D, Schlaeppi K, Spaepen S, Loren Ver, van Themaat E, Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64: 807838.
  • Cartieaux F, Contesto C, Gallou A, Desbrosses G, Kopka J, Taconnat L, Renou JP, Touraine B. 2008. Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium sp strain ORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes. Molecular Plant–Microbe Interactions 21: 244259.
  • Contesto C, Milesi S, Mantelin S, Zancarini A, Desbrosses G, Varoquaux F, Bellini C, Kowalczyk M, Touraine B. 2010. The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta 232: 14551470.
  • Cosgrove DJ. 2005. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology 6: 850861.
  • Costacurta A, Keijers V, Vanderleyden J. 1994. Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Molecular and General Genetics 243: 463472.
  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L. 2005. Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221: 297303.
  • Davies PJ. 2005. Plant hormones: biosynthesis, signal transduction, action! 3rd edn. Dordrecht, the Netherlands: Kluwer Academic Publishers.
  • De Vleesschauwer D, Höfte M. 2009. Rhizobacteria-induced systemic resistance. Advances in Botanical Research 51: 223281.
  • Dixon DP, Sellars JD, Edwards R. 2011. The Arabidopsis phi class glutathione transferase AtGSTF2: binding and regulation by biologically active heterocyclic ligands. Biochemical Journal 438: 6370.
  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y et al. 2001. Responses of agronomically important crops to inoculation with Azospirillum. Australian Journal of Plant Physiology 28: 871879.
  • Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J. 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant and Soil 212: 155164.
  • Dobbelaere S, Vanderleyden J, Okon Y. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences 22: 107149.
  • Döbereiner J, Day JM. 1976. Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Newton WE, Nyman CT, eds. Proceedings of the 1st international symposium on nitrogen fixation, vol. 2. Pullman, WA, USA: Washington State University Press, 518538.
  • Dubrovsky JG, Puente ME, Bashan Y. 1994. Arabidopsis thaliana as a model system for the study of the effect of inoculation by Azospirillum brasilense Sp245 on root hair growth. Soil Biology and Biochemistry 26: 16571664.
  • Finet C, Jaillais Y. 2012. AUXOLOGY: when auxin meets plant evo-devo. Developmental Biology 369: 1931.
  • Fu ZQ, Dong X. 2013. Systemic acquired resistance: turning local infection into global defense. Annual Review of Plant Biology 64: 839863.
  • Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43: 205227.
  • González-Lamothe R, El Oirdi M, Brisson N, Bouarab K. 2012. The conjugated auxin indole-3-acetic acid–aspartic acid promotes plant disease development. Plant Cell 24: 762777.
  • Hungria M, Campo RJ, Souza EM, Pedrosa FO. 2010. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil 331: 413425.
  • Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT. 2009. Priming in systemic plant immunity. Science 324: 8991.
  • Kapulnik Y, Feldman M, Okon Y, Henis Y. 1985. Contribution of nitrogen fixed by Azospirillum to the N nutrition of spring wheat in Israel. Soil Biology and Biochemistry 17: 509515.
  • Kazan K, Manners JM. 2009. Linking development to defense: auxin in plant–pathogen interactions. Trends in Plant Science 14: 373382.
  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J. 2000. Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trends in Microbiology 8: 298300.
  • Laskowski M, Biller S, Stanley K, Kajstura T, Prusty R. 2006. Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. Plant and Cell Physiology 47: 788792.
  • Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology 63: 541556.
  • Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, Ausubel FM. 2010. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22: 973990.
  • Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S. 2008. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20: 768785.
  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312: 436439.
  • Okon Y, Heytler PG, Hardy RWF. 1983. N2 fixation by Azospirillum brasilense and its incorporation into host Setaria italica. Applied and Environmental Microbiology 46: 694697.
  • Okon Y, Labandera-González C. 1994. Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biology and Biochemistry 26: 15911601.
  • Paponov IA, Teale W, Lang D, Paponov M, Reski R, Rensing SA, Palme K. 2009. The evolution of nuclear auxin signalling. BMC Evolutionary Biology 9: 126.
  • Patten CL, Glick BR. 1996. Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology 42: 207220.
  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, van Wees SCM. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28: 489521.
  • Piotrowski M. 2008. Primary or secondary? Versatile nitrilases in plant metabolism. Phytochemistry 69: 26552667.
  • Prinsen E, Costacurta A, Michiels K, Vanderleyden J, Van Onckelen H. 1993. Azospirillum brasilense indole-3-acetic acid biosynthesis – evidence for a non-tryptophan dependent pathway. Molecular Plant–Microbe Interactions 6: 609615.
  • Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671675.
  • Schwachtje J, Karojet S, Thormählen I, Bernholz C, Kunz S, Brouwer S, Schwochow M, Köhl K, van Dongen JT. 2011. A naturally associated rhizobacterium of Arabidopsis thaliana induces a starvation-like transcriptional response while promoting growth. PLoS ONE 6: e29382.
  • Slade WO, Ray WK, Williams PM, Winkel BSJ, Helm RF. 2012. Effects of exogenous auxin and ethylene on the Arabidopsis root proteome. Phytochemistry 84: 1823.
  • Spaepen S, Vanderleyden J, Okon Y. 2009. Plant growth-promoting actions of rhizobacteria. Advances in Botanical Research 51: 283320.
  • Spaepen S, Vanderleyden J, Remans R. 2007. Indole-3-acetic acid in microbial and microorganism–plant signaling. FEMS Microbiology Reviews 31: 425448.
  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W. 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17: 616627.
  • Steenhoudt O, Vanderleyden J. 2000. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Reviews 24: 487506.
  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M. 2004. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal 37: 914939.
  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ. 1997. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 19631971.
  • Van Puyvelde S, Cloots L, Engelen K, Das F, Marchal K, Vanderleyden J, Spaepen S. 2011. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. Microbial Ecology 61: 723728.
  • Vanneste S, Friml J. 2009. Auxin: a trigger for change in plant development. Cell 136: 10051016.
  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ. 2004. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant–Microbe Interactions 17: 895908.
  • Wang YQ, Ohara Y, Nakayashiki H, Tosa Y, Mayama S. 2005. Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Molecular Plant–Microbe Interactions 18: 385396.
  • Weston DJ, Pelletier DA, Morrell-Falvey JL, Tschaplinski TJ, Jawdy SS, Lu TY, Allen SM, Melton SJ, Martin MZ, Schadt CW et al. 2012. Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism, photosynthesis and fitness. Molecular Plant–Microbe Interactions 25: 765778.
  • Woodward AW, Bartel B. 2005. Auxin: regulation, action, and interaction. Annals of Botany 95: 707735.
  • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. 2002. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research 30: e15.
  • Zhang H, Kim M-S, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu C-M, Allen R, Melo IS et al. 2007. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226: 839851.
  • Zhang ZQ, Li Q, Li ZM, Staswick PE, Wang MY, Zhu Y, He ZH. 2007. Dual regulation role of GH3.5 in salicylic acid and auxin signaling during ArabidopsisPseudomonas syringae interaction. Plant Physiology 145: 450464.