SEARCH

SEARCH BY CITATION

References

  • Aphalo PJ, Jarvis PG. 1993. An analysis of Ball's empirical model of stomatal conductance. Annals of Botany 72: 321327.
  • Ball J, Woodrow I, Berry J. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J, ed. Prog. Photosynthesis Res. Proc. Int. Congress 7th, Providence. 10–15 Aug 1986. Vol. 4. Boston, MA, USA: Kluwer, 221224.
  • Beerling DJ, Berner RA. 2005. Feedbacks and the coevolution of plants and atmospheric CO2. Proceedings of the National Academy of Sciences, USA 102: 13021305.
  • Bergmann D, Sack F. 2007. Stomatal development. Annual Review of Plant Biology 58: 163181.
  • Bergmann DC, Lukowitz W, Somerville CR. 2004. Stomatal development and pattern controlled by a MAPKK kinase. Science 304: 14941497.
  • Berry JA, Beerling DJ, Franks PJ. 2010. Stomata: key players in the earth system, past and present. Current Opinion in Plant Biology 13: 233240.
  • Best MJ, Pryor M, Clark DB, Rooney GG, Essery RLH, Menard CB, Edwards JM, Hendry MA, Porson A, Gedney N et al. 2011. The Joint UK Land Environment Simulator (JULES), model description - Part 1: energy and water fluxes. Geoscientific Model Development 4: 677699.
  • Bjorkman O, Boardman NK, Anderson JM, Thorne SW, Goodchild DJ, Pyliotis NA. 1972. The effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions. Carnegie Institution Year Book 71: 115135.
  • de Boer HJ, Lammertsma EI, Wagner-Cremer F, Dilcher DL, Wassen MJ, Dekker SC. 2011. Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2. Proceedings of the National Academy of Sciences, USA 108: 40414046.
  • Brodribb TJ, Feild TS, Jordan GJ. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144: 18901898.
  • Brodribb TJ, Holbrook NM, Zwieniecki MA, Palma B. 2005. Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytologist 165: 839846.
  • Brown HT, Escombe F. 1900. Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character 193: 223291.
  • Buckley TN, Mott KA, Farquhar GD. 2003. A hydromechanical and biochemical model of stomatal conductance. Plant, Cell & Environment 26: 17671785.
  • Casson SA, Franklin KA, Gray JE, Grierson CS, Whitelam GC, Hetherington AM. 2009. phytochrome B and PIF4 regulate stomatal development in response to light quantity. Current Biology 19: 229234.
  • Casson SA, Hetherington AM. 2010. Environmental regulation of stomatal development. Current Opinion in Plant Biology 13: 9095.
  • Cowan IR, Farquhar GD. 1977. Stomatal function in relation to leaf metabolism and environment. Symposia of the Society for Experimental Biology 31: 471505.
  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184187.
  • Damour G, Simonneau T, Cochard H, Urban L. 2010. An overview of models of stomatal conductance at the leaf level. Plant, Cell & Environment 33: 14191438.
  • Doheny-Adams T, Hunt L, Franks PJ, Beerling DJ, Gray JE. 2012. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 547555.
  • Farquhar GD, Sharkey T. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33: 317345.
  • Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 7890.
  • Franks PJ, Adams MA, Amthor JS, Barbour MM, Berry JA, Ellsworth DS, Farquhar GD, Ghannoum O, Lloyd J, McDowell N et al. 2013. Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytologist 197: 10771094.
  • Franks PJ, Beerling DJ. 2009a. CO2-forced evolution of plant gas exchange capacity and water-use efficiency over the Phanerozoic. Geobiology 7: 227236.
  • Franks PJ, Beerling DJ. 2009b. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences, USA 106: 1034310347.
  • Franks PJ, Drake PL, Beerling DJ. 2009. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant, Cell & Environment 32: 17371748.
  • Franks PJ, Farquhar GD. 2001. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physiology 125: 935942.
  • Franks PJ, Leitch IJ, Ruszala EM, Hetherington AM, Beerling DJ. 2012. Physiological framework for adaptation of stomata to CO2 from glacial to future concentrations. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 537546.
  • Geisler M, Nadeau J, Sack FD. 2000. Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation. Plant Cell 12: 20752086.
  • Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T. 2007. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes & Development 21: 17201725.
  • Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving environmental change. Nature 424: 901908.
  • Hu H, Boisson-Dernier A, Israelsson-Nordstrom M, Bohmer M, Xue S, Ries A, Godoski J, Kuhn JM, Schroeder JI. 2010. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nature Cell Biology 12: 8793; sup pp. 1–18.
  • Hunt L, Gray JE. 2009. The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. Current Biology 19: 864869.
  • IPCC. 2001. Appendix II. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, eds. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
  • Jarvis PG. 1976. Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 273: 593610.
  • Kim T-H, Bohmer M, Hu H, Nishimura N, Schroeder JI. 2010. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology 61: 561591.
  • Konrad W, Roth-Nebelsick A, Grein M. 2008. Modelling of stomatal density response to atmospheric CO2. Journal of Theoretical Biology 253: 638658.
  • Lammertsma EI, de Boer HJ, Dekker SC, Dilcher DL, Lotter AF, Wagner-Cremer F. 2011. Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proceedings of the National Academy of Sciences, USA 108: 40354040.
  • Lampard GR, MacAlister CA, Bergmann DC. 2008. Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Science 322: 11131116.
  • Lau OS, Bergmann DC. 2012. Stomatal development: a plant's perspective on cell polarity, cell fate transitions and intercellular communication. Development 139: 36833692.
  • Leuning R. 1995. A critical appraisal of a combined stomatal-photosynthesis model for C-3 plants. Plant, Cell & Environment 18: 339355.
  • Masle J, Gilmore SR, Farquhar GD. 2005. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436: 866870.
  • McElwain JC, Chaloner WG. 1995. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic. Annals of Botany 76: 389395.
  • Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomäki S, Laitat E et al. 2001. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytologist 149: 247264.
  • Meidner H. 1987. Three hundred years of research into stomata. In: Zeiger E, Farquhar GD, Cowan IR, eds. Stomatal function. Stanford, CA, USA: Stanford University Press, 727.
  • Nobel PS. 1999. Leaves and fluxes. Physicochemical and environmental plant physiology. Oxford, UK: Academic Press.
  • Oleson KW, Lawrence DM, Bonan GB, Flanner MG, Kluzek E, Lawrence PJ, Levis S, Swenson SC, Thornton PE. 2010. Technical description of version 4.0 of the Community Land Model (CLM). NCAR/TN-478 +  STR. Boulder, CO, USA: National Center for Atmospheric Research.
  • Ruszala EM, Beerling DJ, Franks PJ, Chater C, Casson SA, Gray JE, Hetherington AM. 2011. Land plants acquired active stomatal control early in their evolutionary history. Current Biology 21: 10301035.
  • Sachs T. 1991. Pattern formation in plant tissues. New York, NY, USA: Cambridge University Press.
  • Seibt U, Wingate L, Berry JA. 2007. Nocturnal stomatal conductance effects on the d18O signatures of foliage gas exchange observed in two forest ecosystems. Tree Physiology 27: 585595.
  • Stewart JB. 1988. Modelling surface conductance of pine forest. Agricultural and Forest Meteorology 43: 1935.
  • Taylor SH, Franks PJ, Hulme SP, Spriggs E, Christin PA, Edwards EJ, Woodward FI, Osborne CP. 2012. Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytologist 193: 387396.
  • Van Der Burgh J, Visscher H, Dilcher DL, Kurschner WM. 1993. Paleoatmospheric signatures in Neogene fossil leaves. Science 260: 17881790.
  • Wong SC, Cowan IR, Farquhar GD. 1979. Stomatal conductance correlates with photosynthetic capacity. Nature 282: 424426.
  • Woodward FI. 1987. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327: 617618.
  • Woodward FI, Lomas MR, Betts RA. 1998. Vegetation-climate feedbacks in a greenhouse world. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 353: 2939.