SEARCH

SEARCH BY CITATION

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309: 10521056.
  • Blonder B, De Carlo F, Moore J, Rivers M, Enquist BJ. 2012. X-ray imaging of leaf venation networks. New Phytologist 196: 12741282.
  • Bowman JL, Smyth DR, Meyerowitz EM. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1: 3752.
  • Bowman JL, Smyth DR, Meyerowitz EM. 2012. The ABC model of flower development: then and now. Development 139: 40954098.
  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J. 2001. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13: 14991510.
  • Brodersen CR, Lee EF, Choat B, Jansen S, Phillips RJ, Shackel KA, McElrone AJ, Matthews MA. 2011. Automated analysis of three-dimensional xylem networks using high-resolution computed tomography. New Phytologist 191: 11681179.
  • Carey AM, Norton GJ, Deacon C, Scheckel KG, Lombi E, Punshon T, Guerinot ML, Lanzirotti A, Newville M, Choi Y et al. 2011. Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytologist 192: 8798.
  • Coen ES. 1992. Flower development. Current Opinion in Cell Biology 4: 929933.
  • Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353: 3137.
  • Corbesier L, Bernier G, Perilleux C. 2002. C: N ratio increases in the phloem sap during floral transition of the long-day plants Sinapis alba and Arabidopsis thaliana. Plant and Cell Physiology 43: 684688.
  • Dhondt S, Vanhaeren H, Van Loo D, Cnudde V, Inze D. 2010. Plant structure visualization by high-resolution X-ray computed tomography. Trends in Plant Science 15: 419422.
  • Doerfler H, Lyon D, Nagele T, Sun X, Fragner L, Hadacek F, Egelhofer V, Weckwerth W. 2013. Granger causality in integrated GC-MS and LC-MS metabolomics data reveals the interface of primary and secondary metabolism. Metabolomics 9: 564574.
  • Dwivedi S, Perotti E, Ortiz R. 2008. Towards molecular breeding of reproductive traits in cereal crops. Plant Biotechnology Journal 6: 529559.
  • Egelhofer V, Hoehenwarter W, Lyon D, Weckwerth W, Wienkoop S. 2013. Using ProtMAX to create high-mass-accuracy precursor alignments from label-free quantitative mass spectrometry data generated in shotgun proteomics experiments. Nature Protocols 8: 595601.
  • Endress PK. 1994. Diversity and evolutionary biology of tropical flowers. Cambridge, UK: Cambridge University Press.
  • Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF. 2000. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127: 725734.
  • Gamisch A, Staedler YM, Schönenberger J, Fischer GA, Comes HP. 2013. Histological and micro-CT evidence of stigmatic rostellum receptivity promoting auto-pollination in the Madagascan orchid Bulbophyllum bicoloratum. PLoS One 8: e72688.
  • Gregg CL, Butcher JT. 2012. Quantitative in vivo imaging of embryonic development: opportunities and challenges. Differentiation; Research in Biological Diversity 84: 149162.
  • Hanson J, Hanssen M, Wiese A, Hendriks MM, Smeekens S. 2008. The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. Plant Journal 53: 935949.
  • Hoehenwarter W, Thomas M, Nukarinen E, Egelhofer V, Rohrig H, Weckwerth W, Conrath U, Beckers GJ. 2013. Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography. Molecular and Cellular Proteomics 12: 369380.
  • Igersheim A. 1993. The character states of the Caribbean monotypic endemic Strumpfia (Rubiaceae). Nordic Journal of Botany 13: 545559.
  • Igersheim A, Cichocki O. 1996. A simple method for microtome sectioning of prehistoric charcoal specimens, embedded in 2-hydroxyethyl methacrylate (HEMA). Review of Palaeobotany and Palynology 92: 389393.
  • Kaminuma E, Yoshizumi T, Wada T, Matsui M, Toyoda T. 2008. Quantitative analysis of heterogeneous spatial distribution of Arabidopsis leaf trichomes using micro X-ray computed tomography. Plant Journal 56: 470482.
  • Koch K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology 7: 235246.
  • Ma J, Hanssen M, Lundgren K, Hernandez L, Delatte T, Ehlert A, Liu C-M, Schluepmann H, Droege-Laser W, Moritz T et al. 2011. The sucrose-regulated Arabidopsis transcription factor bZIP11 reprograms metabolism and regulates trehalose metabolism. New Phytologist 191: 733745.
  • Mari A, Lyon D, Fragner L, Montoro P, Piacente S, Wienkoop S, Egelhofer V, Weckwerth W. 2013. Phytochemical composition of Potentilla anserina L. analyzed by an integrative GC-MS and LC-MS metabolomics platform. Metabolomics 9: 599607.
  • Meyerowitz EM. 1994. Flower development and evolution: new answers and new questions. Proceedings of the National Academy of Sciences, USA 91: 57355737.
  • Morgenthal K, Wienkoop S, Scholz M, Selbig J, Weckwerth W. 2005. Correlative GC-TOF-MS-based metabolite profiling and LC-MS-based protein profiling reveal time-related systemic regulation of metabolite–protein networks and improve pattern recognition for multiple biomarker selection. Metabolomics 1: 109121.
  • Müller A. 1961. Zur Charakterisierung der Blüten und Infloreszenzen von Arabidopsis thaliana (L.) Heynh. Die Kulturpflanze 9: 364393.
  • Muller J, Wiemken A, Aeschbacher R. 1999. Trehalose metabolism in sugar sensing and plant development. Plant Science 147: 3747.
  • Naegele T, Weckwerth W. 2013. Eigenvalues of Jacobian matrices report on steps of metabolic reprogramming in a complex plant-environment interaction. Applied Mathematics 4: 4449.
  • Napolitano A, Akay S, Mari A, Bedir E, Pizza C, Piacente S. 2013. An analytical approach based on ESI-MS, LC-MS and PCA for the quali-quantitative analysis of cycloartane derivatives in Astragalus spp. Journal of Pharmaceutical and Biomedical Analysis 85: 4654.
  • Obermeyer G, Fragner L, Lang V, Weckwerth W. 2013. Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain. Plant Physiology 162: 18221833.
  • Pajor R, Fleming A, Osborne CP, Rolfe SA, Sturrock CJ, Mooney SJ. 2013. Seeing space: visualization and quantification of plant leaf structure using X-ray micro-computed tomography. Journal of Experimental Botany 64: 385390.
  • Rolland F, Baena-Gonzalez E, Sheen J. 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology 57: 675709.
  • Sakakibara H, Takei K, Hirose N. 2006. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends in Plant Science 11: 440448.
  • Smeekens S, Ma J, Hanson J, Rolland F. 2010. Sugar signals and molecular networks controlling plant growth. Current Opinion in Plant Biology 13: 274279.
  • Smyth DR, Bowman JL, Meyerowitz EM. 1990. Early flower development in Arabidopsis. Plant Cell 2: 755767.
  • Staedler YM, Masson D, Schönenberger J. 2013. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging. PLoS One 8: e75295.
  • Sun X, Weckwerth W. 2013. Using COVAIN to analyze metabolomics data. In: Weckwerth W, Kahl G, eds. The handbook of plant metabolomics. Hoboken, NJ, USA: John Wiley & Sons, 305320.
  • Sun XL, Weckwerth W. 2012. COVAIN: a toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data. Metabolomics 8: S81S93.
  • Tappero R, Peltier E, Grafe M, Heidel K, Ginder-Vogel M, Livi KJ, Rivers ML, Marcus MA, Chaney RL, Sparks DL. 2007. Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytologist 175: 641654.
  • The Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105121.
  • Valledor L, Furuhashi T, Hanak AM, Weckwerth W. 2013. Systemic cold stress adaptation of Chlamydomonas reinhardtii. Molecular and Cellular Proteomics 12: 20322047.
  • Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M. 2013. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339: 704707.
  • Weckwerth W. 2008. Integration of metabolomics and proteomics in molecular plant physiology – coping with the complexity by data-dimensionality reduction. Physiologia Plantarum 132: 176189.
  • Weckwerth W. 2011. Green systems biology – from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. Journal of Proteomics 75: 284305.
  • Weckwerth W, Wenzel K, Fiehn O. 2004. Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4: 7883.
  • Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM. 2006. Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genetics 2: e117.
  • Wienkoop S, Morgenthal K, Wolschin F, Scholz M, Selbig J, Weckwerth W. 2008. Integration of metabolomic and proteomic phenotypes: analysis of data covariance dissects starch and RFO metabolism from low and high temperature compensation response in Arabidopsis thaliana. Molecular and Cellular Proteomics 7: 17251736.