SEARCH

SEARCH BY CITATION

References

  • Akiyoshi DE, Regier DA, Gordon MP. 1987. Cytokinin production by Agrobacterium and Pseudomonas spp. Journal of Bacteriology 169: 42424248.
  • Anderson JP, Lichtenzveig J, Gleason C, Oliver RP, Singh KB. 2010. The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. Plant Physiology 154: 861873.
  • Ariel F, Brault-Hernandez M, Laffont C, Huault E, Brault M, Plet J, Moison M, Blanchet S, Ichante JL, Chabaud M et al. 2012. Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula. Plant Cell 24: 38383852.
  • Baron C, Zambryski PC. 1995. The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annual Review of Genetics 29: 107129.
  • Barrett T, Edgar R. 2006. Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods in Enzymology 411: 352369.
  • Ben C, Debellé F, Berges H, Bellec A, Jardinaud MF, Anson P, Huguet T, Gentzbittel L, Vailleau F. 2013. MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum. New Phytologist 199: 758772.
  • Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T et al. 2008. A gene expression atlas of the model legume Medicago truncatula. Plant Journal 55: 504513.
  • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate – a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological 57: 289300.
  • Bhargava A, Clabaugh I, To JP, Maxwell BB, Chiang Y-H, Schaller GE, Loraine A, Kieber JJ. 2013. Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. Plant Physiology 162: 272294.
  • Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG. 2001. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Molecular Plant–Microbe Interactions 14: 695700.
  • Boscari A, Del Giudice J, Ferrarini A, Venturini L, Zaffini AL, Delledonne M, Puppo A. 2013. Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: which role for nitric oxide? Plant Physiology 161: 425439.
  • Boucher CA, Vangijsegem F, Barberis PA, Arlat M, Zischek C. 1987. Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered. Journal of Bacteriology 169: 56265632.
  • Choi J, Choi D, Lee S, Ryu CM, Hwang I. 2011. Cytokinins and plant immunity: old foes or new friends? Trends in Plant Science 16: 388394.
  • Choi J, Huh SU, Kojima M, Sakakibara H, Paek K-H, Hwang I. 2010. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic scid signaling in Arabidopsis. Developmental Cell 19: 284295.
  • Clarke SF, Burritt DJ, Guy PL. 1998. Influence of plant hormones on virus replication and pathogenesis-related proteins in Phaseolus vulgaris L. infected with white clover mosaic potexvirus. Physiological and Molecular Plant Pathology 53: 195207.
  • Clarke SF, McKenzie MJ, Burritt DJ, Guy PL, Jameson PE. 1999. Influence of white clover mosaic potexvirus infection on the endogenous cytokinin content of bean. Plant Physiology 120: 547552.
  • Cunnac S, Boucher C, Genin S. 2004. Characterization of the cis-acting regulatory element controlling HrpB-mediated activation of the type III secretion system and effector genes in Ralstonia solanacearum. Journal of Bacteriology 186: 23092318.
  • Damiani I, Baldacci-Cresp F, Hopkins J, Andrio E, Balzergue S, Lecomte P, Puppo A, Abad P, Favery B, Hérouart D. 2012. Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes. New Phytologist 194: 511522.
  • Den Camp RO, Streng A, De Mita S, Cao QQ, Polone E, Liu W, Ammiraju JSS, Kudrna D, Wing R, Untergasser A et al. 2011. LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331: 909912.
  • El Yahyaoui F, Kuster H, Ben Amor B, Hohnjec N, Puhler A, Becker A, Gouzy J, Vernie T, Gough C, Niebel A et al. 2004. Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiology 136: 31593176.
  • Etchebar C, Trigalet-Demery D, van Gijsegem F, Vasse J, Trigalet A. 1998. Xylem colonization by an HrcV(–) mutant of Ralstonia solanacearum is a key factor for the efficient biological control of tomato bacterial wilt. Molecular Plant–Microbe Interactions 11: 869877.
  • Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K. 2008. Cytokinin: secret agent of symbiosis. Trends in Plant Science 13: 115120.
  • Gagnot S, Tamby JP, Martin-Magniette ML, Bitton F, Taconnat L, Balzergue S, Aubourg S, Renou JP, Lecharny A, Brunaud V. 2008. CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform. Nucleic Acids Research 36: D986D990.
  • Gamas P, de Billy F, Truchet G. 1998. Symbiosis-specific expression of two Medicago truncatula nodulin genes, MtN1 and MtN13, encoding products homologous to plant defense proteins. Molecular Plant–Microbe Interactions 11: 393403.
  • Genin S. 2010. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytologist 187: 920928.
  • Genin S, Denny TP. 2012. Pathogenomics of the Ralstonia solanacearum species complex. Annual Review of Phytopathology 50: 6789.
  • Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P. 2009. Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiology 149: 14241434.
  • Gonzalez-Rizzo S, Crespi M, Frugier F. 2006. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18: 26802693.
  • Hann DR, Domínguez-Ferreras A, Motyka V, Dobrev PI, Schornack S, Jehle A, Felix G, Chinchilla D, Rathjen JP, Boller T. 2013. The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytologist. doi: 10.1111/nph.12544.
  • Heidstra R, Yang WC, Yalcin Y, Peck S, Emons AM, van Kammen A, Bisseling T. 1997. Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium–legume interaction. Development 124: 17811787.
  • Heslop-Harrison J, Heslop-Harrison Y. 1970. Evaluation of pollen viability by enzymatically induced fluorescence – intracellular hydrolysis of fluorescein diacetate. Stain Technology 45: 115.
  • Hines WGS, Hines RJO. 2000. Increased power with modified forms of the Levene (Med) test for heterogeneity of variance. Biometrics 56: 451454.
  • Hwang I, Sheen J, Müller B. 2012. Cytokinin signaling networks. Annual Review of Plant Biology 63: 353380.
  • Jiang C-J, Shimono M, Sugano S, Kojima M, Liu X, Inoue H, Sakakibara H, Takatsuji H. 2013. Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Molecular Plant–Microbe Interactions 26: 287296.
  • Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444: 323329.
  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. 2007. How rhizobial symbionts invade plants: the SinorhizobiumMedicago model. Nature Reviews Microbiology 5: 619633.
  • Kouchi H, Shimomura K, Hata S, Hirota A, Wu GJ, Kumagai H, Tajima S, Suganuma N, Suzuki A, Aoki T et al. 2004. Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Research 11: 263274.
  • Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H. 2009. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21: 31523169.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCTmethod. Methods 25: 402408.
  • Lohar DP, Sharopova N, Endre G, Penuela S, Samac D, Town C, Silverstein KA, VandenBosch KA. 2006. Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiology 140: 221234.
  • Mahonen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y. 2006. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311: 9498.
  • Maksimov IV, Ganiev RM, Khairullin RM. 2002. Changes in the levels of IAA, ABA, and cytokinins in wheat seedlings infected with Tilletia caries. Russian Journal of Plant Physiology 49: 221224.
  • Maunoury N, Redondo-Nieto M, Bourcy M, Van de Velde W, Alunni B, Laporte P, Durand P, Agier N, Marisa L, Vaubert D et al. 2010. Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS ONE 5: e9519.
  • Mithöfer A. 2002. Suppression of plant defence in rhizobia–legume symbiosis. Trends in Plant Science 7: 440444.
  • Moreau S, Verdenaud M, Ott T, Letort S, de Billy F, Niebel A, Gouzy J, de Carvalho-Niebel F, Gamas P. 2011. Transcription reprogramming during root nodule development in Medicago truncatula. PLoS ONE 6: e16463.
  • Nakagawa T, Kaku H, Shimoda Y, Sugiyama A, Shimamura M, Takanashi K, Yazaki K, Aoki T, Shibuya N, Kouchi H. 2011. From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume–Rhizobium symbiosis. Plant Journal 65: 169180.
  • Niehaus K, Kapp D, Pühler A. 1993. Plant defence and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-deficient Rhizobium meliloti mutant. Planta 190: 415425.
  • Oldroyd GED, Engstrom EM, Long SR. 2001. Ethylene inhibits the nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13: 18351849.
  • Oldroyd GED, Murray JD, Poole PS, Downie JA. 2011. The rules of engagement in the legume–rhizobial symbiosis. Annual Review of Genetics 45: 119144.
  • O'Malley RC, Lynn DG. 2000. Expansin message regulation in parasitic angiosperms: marking time in development. Plant Cell 12: 14551465.
  • Peeters N, Guidot A, Vailleau F, Valls M. 2013. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Molecular Plant Pathology 14: 651662.
  • Peleg-Grossman S, Golani Y, Kaye Y, Melamed-Book N, Levine A. 2009. NPR1 protein regulates pathogenic and symbiotic interactions between rhizobium and legumes and non-legumes. PLoS ONE 4: e8399.
  • Peleg-Grossman S, Melamed-Book N, Levine A. 2012. ROS production during symbiotic infection suppresses pathogenesis-related gene expression. Plant Signaling & Behavior 7: 409415.
  • Penmetsa RV, Cook DR. 1997. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275: 527530.
  • Penmetsa RV, Uribe P, Anderson J, Lichtenzveig J, Gish JC, Nam YW, Engstrom E, Xu K, Sckisel G, Pereira M et al. 2008. The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant Journal 55: 580595.
  • Pertry I, Vaclavikova K, Depuydt S, Galuszka P, Spichal L, Temmerman W, Stes E, Schmulling T, Kakimoto T, Van Montagu MCE et al. 2009. Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proceedings of the National Academy of Sciences, USA 106: 929934.
  • Plet J, Wasson A, Ariel F, Le Signor C, Baker D, Mathesius U, Crespi M, Frugier F. 2011. MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant Journal 65: 622633.
  • Poueymiro M, Genin S. 2009. Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant. Current Opinion in Microbiology 12: 4452.
  • Rashotte AM, Goertzen LR. 2010. The CRF domain defines Cytokinin Response Factor proteins in plants. BMC Plant Biology 10: 74.
  • Rey T, Nars A, Bonhomme M, Bottin A, Huguet S, Balzergue S, Jardinaud MF, Bono JJ, Cullimore J, Dumas B et al. 2013. NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens. New Phytologist 198: 875886.
  • Rey T, Schornack S. 2013. Interactions of beneficial and detrimental root-colonizing filamentous microbes with plant hosts. Genome Biology 14: 121.
  • Robert-Seilaniantz A, Grant M, Jones JDG. 2011. Hormone crosstalk in plant disease and defense: more than just jasmonate–salicylate antagonism. Annual Review of Phytopathology 49: 317343.
  • Royston P. 1995. A remark on algorithm AS-181 – the W-test for normality. Applied Statistics-Journal of the Royal Statistical Society Series C 44: 547551.
  • Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus JC, Cattolico L et al. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415: 497502.
  • Saur IML, Oakes M, Djordjevic MA, Imin N. 2011. Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in Medicago truncatula. New Phytologist 190: 865874.
  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al. 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9: 676682.
  • Stacey G, McAlvin CB, Kim SY, Olivares J, Soto MJ. 2006. Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Physiology 141: 14731481.
  • Sun JH, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM. 2006. Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant Journal 46: 961970.
  • Tellström V, Usadel B, Thimm O, Stitt M, Küster H, Niehaus K. 2007. The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiology 143: 825837.
  • Turner M, Jauneau A, Genin S, Tavella MJ, Vailleau F, Gentzbittel L, Jardinaud MF. 2009. Dissection of bacterial wilt on Medicago truncatula revealed two type III secretion system effectors acting on root infection process and disease development. Plant Physiology 150: 17131722.
  • Vailleau F, Sartorel E, Jardinaud MF, Chardon F, Genin S, Huguet T, Gentzbittel L, Petitprez M. 2007. Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula. Molecular Plant–Microbe Interactions 20: 159167.
  • Valls M, Genin S, Boucher C. 2006. Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearum. PLoS Pathogens 2: e82.
  • Vasse J, de Billy F, Truchet G. 1993. Abortion of infection during the Rhizobium meliloti–Alfalfa symbiotic interaction is accompanied by a hypersensitive response. Plant Journal 4: 555566.
  • Vasse J, Genin S, Frey P, Boucher C, Brito B. 2000. The hrpB and hrpG regulatory genes of Ralstonia solanacearum are required for different stages of the tomato root infection process. Molecular Plant–Microbe Interactions 13: 259267.
  • Vernié T, Moreau S, de Billy F, Plet J, Combier JP, Rogers C, Oldroyd G, Frugier F, Niebel A, Gamas P. 2008. EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell 20: 26962713.
  • Walters DR, McRoberts N, Fitt BD. 2008. Are green islands red herrings? Significance of green islands in plant interactions with pathogens and pests. Biological Reviews of the Cambridge Philosophical Society 83: 79102.
  • Yandell BS. 1997. Practical data analysis for designed experiments. London, UK: Chapman & Hall.