SEARCH

SEARCH BY CITATION

References

  • Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165: 351372.
  • Arora VK, Boer GJ, Freidlingstein P, Eby M, Jones CD, Christian JR, Bonan G, Bopp L, Brovkin V, Cadule P et al. 2013. Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. Journal of Climate 26: 52895314.
  • Arrhenius S. 1896. On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine and Journal of Science 41: 237276.
  • Bonan GB, Oleson KW, Fisher RA, Lasslop G, Reichstein M. 2012. Reconciling leaf physiological traits and canopy flux data: use of the TRY and FLUXNET databases in the Community Land Model version 4. Journal of Geophysical Research 117: G02026. doi: 10.1029-2011JG001913.
  • Collatz GJ, Ball JT, Grivet C, Berry JA. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration – a model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54: 107136.
  • Comins H, McMurtrie RE. 1993. Long-term biotic response of nutrient-limited forest ecosystems to CO2-enrichment: equilibrium behaviour of integrated plant–soil models. Ecological Applications 3: 666681.
  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD et al. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology 7: 357373.
  • Crous KY, Walters MB, Ellsworth DS. 2008. Elevated CO2 concentration affects leaf photosynthesis–nitrogen relationships in Pinus taeda over nine years in FACE. Tree Physiology 28: 607614.
  • De Kauwe M, Medlyn BE, Zaehle S, Walker AP, Dietze M, Thomas H, Jain AK, Luo Y, Parton WJ, Prentice IC et al. 2013. Forest water use and water use efficiency at elevated CO2: a model–data intercomparison at two contrasting temperate forest FACE sites. Global Change Biology 19: 17591779.
  • Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC. 2013. Stoichiometry constrains microbial response to root exudation – insights from a model and a field experiment in a temperate forest. Biogeosciences 10: 821838.
  • Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML et al. 2011. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecology Letters 14: 349357.
  • Ellsworth DS, Thomas R, Crous KY, Palmroth S, Ward E, Maier C, DeLucia E, Oren R. 2011. Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. Global Change Biology 18: 223242.
  • Farquhar GD, Caemmerer SV, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 7890.
  • Finzi AC, DeLucia E, Hamilton J, Schlesinger W, Richter D. 2002. The nitrogen budget of a pine forest under free air CO2 enrichment. Oecologia 132: 567578.
  • Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME et al. 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, USA 104: 1401414019.
  • Friend AD, Stevens AK, Knox RG, Cannell MGR. 1997. A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecological Modelling 95: 249287.
  • Garten CT Jr, Iversen CM, Norby RJ. 2011. Litterfall 15N abundance indicated declining soil nitrogen availability in a free-air CO2 enrichment experiment. Ecology 92: 133139.
  • Harley PC, Loreto F, Marco GD, Sharkey TD. 1992. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analyses of the response of photosynthesis to CO2. Plant Physiology 98: 14291436.
  • Haxeltine A, Prentice IC. 1996. A general model for the light-use efficiency of primary production. Functional Ecology 10: 551561.
  • Hickler T, Smith B, Prentice IC, Mjofors K, Miller P, Arneth A, Sykes MT. 2008. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Global Change Biology 14: 15311542.
  • Hofmockel KS, Gallet-Budynek A, McCarthy HR, Currie WS, Jackson RB, Finzi AC. 2011. Sources of increased N uptake in forest trees growing under elevated CO2: results of a large-scale 15N study. Global Change Biology 17: 33383350.
  • Iversen CM. 2009. Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytologist 186: 346357.
  • Iversen CM, Hooker TD, Classen AT, Norby RJ. 2011. Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2]. Global Change Biology 17: 11301139.
  • Iversen CM, Keller JK, Garten CT Jr, Norby RJ. 2012. Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2-enrichment. Global Change Biology 18: 16841697.
  • Iversen CM, Ledford J, Norby RJ. 2008. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytologist 179: 837847.
  • Jastrow JD, Miller MR, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE. 2005. Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biology 11: 20572064.
  • Johnson DW, Cheng W, Joslin JD, Norby RJ, Edwards NT, Todd DE. 2004. Effects of elevated CO2 on nutrient cycling in a sweetgum plantation. Biogeochemistry 69: 379403.
  • Kull O, Kruijt B. 1998. Leaf photosynthetic light response: a mechanistic model for scaling photosynthesis to leaves and canopies. Functional Ecology 12: 767777.
  • Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy PC, Wohlfahrt G. 2010. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology 16: 187208.
  • Lichter J, Billings SA, Ziegler SE, Gaindh D, Ryals R, Finzi AC, Jackson RB, Stemmler EA, Schlesinger WH. 2008. Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment. Global Change Biology 14: 29102922.
  • Liebig JV. 1843. Die Chemie in ihrer Anwendung auf Agricultur und Physiologie. Braunschweig, Germany: Verlag Vieweg.
  • Luo Y, Reynolds JF. 1999. Validity of extrapolating field CO2 experiments to predict carbon sequestration in natural ecosystems. Ecology 80: 15681583.
  • Luo Y, Su B, Currie WS, Dukes JS, Finzi AC, Hartwig U, Hungate BA, McMurtrie RE, Oren R, Parton WJ et al. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54: 731739.
  • Maier CA, Palmroth S, Ward E. 2008. Short-term effects of fertilization on photosynthesis and leaf morphology of field-grown loblolly pine following long-term exposure to elevated CO2 concentration. Tree Physiology 28: 597606.
  • Maire V, Martre P, Kattge J, Gastal F, Esser G, Fontaine S, Soussana J-F. 2012. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE 7: e38345.
  • McCarthy HR, Oren R, Finzi AC, Ellsworth DS, Kim H-S, Johnsen KH, Millar B. 2007. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2. Global Change Biology 13: 24792497.
  • McCarthy HR, Oren R, Johnsen KH, Gallet-Budynek A, Pritchard SG, Cook CW, LaDeau SL, Jackson RB, Finzi AC. 2010. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytologist 185: 514528.
  • McMurtrie RE, Dewar RC. 2013. New insights into carbon allocation by trees from the hypothesis that annual wood production is maximized. New Phytologist 199: 981990.
  • McMurtrie RE, Norby RJ, Medlyn BE, Dewar RC, Pepper DA, Reich PB, Barton CVM. 2008. Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Functional Plant Biology 35: 521534.
  • Medlyn BE. 1996a. The optimal allocation of nitrogen within the C3 photosynthetic system at elevated CO2. Australian Journal of Plant Physiology 23: 593603.
  • Medlyn BE. 1996b. Interactive effects of atmospheric carbon dioxide and leaf nitrogen concentration on canopy light use efficiency: a modeling analysis. Tree Physiology 16: 201209.
  • Medvigy D, Wofsy SC, Munger JW, Hollinger DY, Moorcroft PR. 2009. Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography Model version 2. Journal of Geophysical Research 114: G01002.
  • Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L et al. 2011. Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences, USA 108: 95089512.
  • Norby R, Iversen CM. 2006. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2 enriched sweetgum forest. Ecology 87: 514.
  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R et al. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences, USA 102: 1805218056.
  • Norby RJ, Hanson PJ, O'Neill EG, Tschaplinski TJ, Hansen RA, Cheng W, Wullschleger SD, Gunderson CA, Edwards NT, Johnson DW. 2002. Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecological Applications 12: 12611266.
  • Norby RJ, Todd DE, Fults J, Johnson DW. 2001. Allometric determination of tree growth in a CO2-enriched sweetgum stand. New Phytologist 150: 477487.
  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE. 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences, USA 107: 1936819373.
  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG et al. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411: 469472.
  • Palmroth S, Oren R, McCarthy HR, Johnsen KH, Finzi AC, Butnor JR, Ryan MG, Schlese U. 2006. Aboveground sink strength in forests controls the allocation of carbon below ground and its [CO2]-induced enhancement. Proceedings of the National Academy of Sciences, USA 103: 1936219367.
  • Parton WJ, Hanson PJ, Swanston C, Torn M, Trumbore SE, Riley W, Kelly R. 2010. ForCent model development and testing using the Enriched Background Isotope Study experiment. Journal of Geophysical Research 115: G04001.
  • Piao SL, Sitch SA, Ciais P, Friedlingstein P, Peylin P, Wang X, Ahlström A, Anav A, Canadell JG, Cong N et al. 2013. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology 19: 21172132.
  • Rastetter EB, Agren GI, Shaver GR. 1997. Responses of N-limited ecosystems to increased CO2: a balanced-nutrition, coupled-element-cycles model. Ecological Applications 7: 444460.
  • Rastetter EB, McKane RB, Shaver GR, Melillo JM. 1992. Changes in C storage by terrestrial ecosystems: how C–N interactions restrict responses to CO2 and temperature. Water, Air, and Soil Pollution 64: 327344.
  • Sands PJ. 1995. Modelling canopy production I. Optimal distribution of photosynthetic resources. Australian Journal of Plant Physiology 22: 593601.
  • Sands PJ. 1996. Modelling canopy production III. Canopy light-utilisation efficiency and its sensitivity to physiological and environmental variables. Australian Journal of Plant Physiology 23: 103114.
  • Sitch SA, Friedlingstein P, Gruber N, Jones S, Murray-Tortarolo G, Ahlström A, Doney SC, Graven H, Heinze C, Huntingford C et al. 2013. Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades. Biogeoscience Discussions 10: 2011320177.
  • Sitch SA, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox PM, Friedlingstein P et al. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate–carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology 14: 20152039.
  • Smith B, Prentice IC, Sykes MT. 2001. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecology and Biogeography 10: 621637.
  • Smith B, Warlind D, Arneth A, Thomas H, Leadly P, Siltberg J, Zaehle S. 2013. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences Discussions 10: 1856318611.
  • Sokolov AP, Kicklighter DW, Melillo JM, Felzer BS, Schlosser CA, Cronin TW. 2008. Consequences of considering carbon–nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. Journal of Climate 21: 37763796.
  • Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, Fung I, Lamarque JF, Feddema JJ, Lee YH. 2009. Carbon–nitrogen interactions regulate climate–carbon cycle feedbacks: results from an atmosphere–ocean general circulation model. Biogeosciences 6: 20992120.
  • Thornton PE, Lamarque J-F, Rosenbloom NA, Mahowald NM. 2007. Influence of carbon–nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles 21: GB4018.
  • Thornton PE, Zimmermann NE. 2007. An improved canopy integration scheme for a land surface model with prognostic canopy structure. Journal of Climate 20: 39023923.
  • Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea – how it can occur. Biogeochemistry 13: 87115.
  • Wang S, Grant RF, Verseghy DL, Black TA. 2001. Modelling plant carbon and nitrogen dynamics of a boreal aspen forest in CLASS – the Canadian Land Surface Scheme. Ecological Modelling 142: 135154.
  • Wang Y-P, Houlton BZ. 2009. Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback. Geophysical Research Letters 36: L24403. doi: 10.1029/2009GL041009.
  • Wang Y-P, Kowalczyk E, Leuning R, Abramowitz G, Raupach MR, Pak B, van Gorsel E, Luhar A. 2011. Diagnosing errors in a land surface model (CABLE) in the time and frequency domains. Journal of Geophysical Research 116: G01034.
  • Wang YP, Law RM, Pak B. 2010. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7: 22612282.
  • Warren JM, Pötzelsberger E, Wullschleger SD, Thornton PE, Hasenauer H, Norby RJ. 2011. Ecohydrologic impact of reduced stomatal conductance in forests exposed to elevated CO2. Ecohydrology 4: 196210.
  • Weng E, Luo Y. 2008. Soil hydrological properties regulate grassland ecosystem responses to multifactor global change: a modeling analysis. Journal of Geophysical Research 113: G03003.
  • Woodward FI, Smith TM, Emanuel WR. 1995. A global land primary productivity and phytogeography model. Global Biogeochemical Cycles 9: 471490.
  • Xu C, Fisher R, Wullschleger SD, Wilson CJ, Cai M, McDowell NG. 2012. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics. PLoS ONE 7: e37914.
  • Yang X, Wittig V, Jain AK, Post W. 2009. The integration of nitrogen cycle dynamics into the Integrated Science Assessment Model (ISAM) for the study of terrestrial ecosystem responses to global change. Global Biogeochemical Cycles 23: GB4029.
  • Zaehle S, Ciais P, Friend AD, Prieur V. 2011. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nature Geoscience 4: 15.
  • Zaehle S, Dalmonech D. 2011. Carbon–nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks. Current Opinion in Environmental Sustainability 3: 311320.
  • Zaehle S, Friedlingstein P, Friend AD. 2010. Terrestrial nitrogen feedbacks may accelerate future climate change. Geophysical Research Letters 37: L01401.
  • Zaehle S, Friend AD. 2010. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Global Biogeochemical Cycles 24: GB1005.
  • Zhang Q, Wang YP, Pitman AJ, Dai YJ. 2011. Limitations of nitrogen and phosphorous on the terrestrial carbon uptake in the 20th century. Geophysical Research Letters 38: GL049244.