SEARCH

SEARCH BY CITATION

References

  • Aral B, Kamoun P. 1997. The proline biosynthesis in living organisms. Amino Acids 13: 189217.
  • Baxter CJ, Redestig H, Schauer N, Repsilber D, Patil KR, Nielsen J, Selbig J, Liu J, Fernie AR, Sweetlove LJ. 2007. The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiology 143: 312325.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248254.
  • Cecchini NM, Monteoliva MI, Alvarez ME. 2010. Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiology 155: 19471959.
  • Cecchini NM, Monteoliva MI, Alvarez ME. 2011. Proline dehydrogenase is a positive regulator of cell death in different kingdoms. Plant Signaling and Behavior 6: 11951197.
  • Chilson OP, Kelly-Chilson AE, Schneider JD. 1992. Pyrroline-5-carboxylate reductase in soybean nodules: comparison of the enzymes in host cytosol, Bradyrhizobium japonicum bacteroids, and cultures. Plant Physiology 99: 119123.
  • Chilson OP, Kelly-Chilson AE, Siegel NR. 1991. Pyrroline-5-carboxylate reductase in soybean nodules: isolation/partial primary structure/evidence for isozymes. Archives of Biochemistry and Biophysics 288: 350357.
  • Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaf E, Kunze R, Frommer WB. 2004. The role of δ1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16: 34133425.
  • Forlani G, Berlicki Ł, Duò M, Dziędzioła G, Giberti S, Bertazzini M, Kafarski P. 2013. Synthesis and evaluation of effective inhibitors of plant δ1-pyrroline-5-carboxylate reductase. Journal of Agricultural and Food Chemistry 61: 67926798.
  • Forlani G, Giberti S, Berlicki Ł, Petrollino D, Kafarski P. 2007. Plant P5C reductase as a new target for aminomethylenebisphosphonates. Journal of Agricultural and Food Chemistry 55: 43404347.
  • Forlani G, Occhipinti A, Berlicki Ł, Dziędzioła G, Wieczorek A, Kafarski P. 2008. Tailoring the structure of aminophosphonates to target plant P5C reductase. Journal of Agricultural and Food Chemistry 56: 31933199.
  • Forlani G, Scainelli D, Nielsen E. 1997. Δ1-pyrroline-5-carboxylate dehydrogenase from cultured cells of potato. Purification and properties. Plant Physiology 113: 14131418.
  • Funck D, Winter G, Baumgarten L, Forlani G. 2012. Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biology 12: 191.
  • Hare PD, Cress WA. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation 21: 79102.
  • Hashida S, Takahashi H, Uchimiya H. 2009. The role of NAD biosynthesis in plant development and stress responses. Annals of Botany 103: 819824.
  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. 2012. Role of proline under changing environments: a review. Plant Signaling and Behavior 7: 14561466.
  • Hua XJ, Van de Cotte B, Van Montagu M, Verbruggen N. 1997. Developmental regulation of pyrroline-5-carboxylate reductase gene expression in Arabidopsis. Plant Physiology 114: 12151224.
  • Hua XJ, Van de Cotte B, Van Montagu M, Verbruggen N. 2001. The 5′ untranslated region of the At-P5R gene is involved in both transcriptional and post-transcriptional regulation. Plant Journal 26: 157169.
  • Kavi Kishor PB, Hong Z, Miao G-H, Hu C-AA, Verma DPS. 1995. Overexpression of δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology 108: 13871394.
  • Kavi Kishor PB, Sangam S, Amrutha RN, SriLaxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N. 2005. Regulation of proline biosynthesis, degradation, uptake and trasport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science 88: 424438.
  • Kesari R, Lasky JR, Villamor JG, Des Marais DL, Chen YJ, Liu TW, Lin W, Juenger TE, Verslues PE. 2012. Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation. Proceedings of the National Academy of Sciences, USA 109: 91979202.
  • Krueger R, Jäger HJ, Hintz M, Pahlich E. 1986. Purification to homogeneity of pyrroline-5-carboxylate reductase of barley. Plant Physiology 80: 142144.
  • Lehmann S, Funck D, Szabados L, Rentsch D. 2010. Proline metabolism and transport in plant development. Amino Acids 39: 949962.
  • Mattioli R, Costantino P, Trovato M. 2009. Proline accumulation in plants: not only stress. Plant Signaling and Behavior 4: 10161018.
  • Merrill MJ, Yeh GC, Phang JM. 1989. Purified human erythrocyte pyrroline-5-carboxylate reductase. Preferential oxidation of NADPH. Journal of Biological Chemistry 264: 93529358.
  • Miller G, Honig A, Stein H, Suzuki N, Mittler R, Ziberstein A. 2009. Unraveling δ1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. Journal of Biological Chemistry 284: 2648226492.
  • Mitchell HJ, Ayliffe MA, Rashid KY, Pryor AJ. 2006. A rust-inducible gene from flax. fis1. is involved in proline catabolism. Planta 223: 213222.
  • Murahama M, Yoshida T, Hayashi F, Ichino T, Sanada Y, Wada K. 2001. Purification and characterization of δ1-pyrroline-5-carboxylate reductase isoenzymes, indicating differential distribution in spinach (Spinacia oleracea L.) leaves. Plant and Cell Physiology 42: 742750.
  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473497.
  • Petrollino D, Forlani G. 2012. Coenzyme preference of Streptococcus pyogenes P5C reductase: evidence supporting NADPH as the physiological electron donor. Amino Acids 43: 493497.
  • Queval G, Noctor G. 2007. A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development. Analytical Biochemistry 363: 5869.
  • Rayapati PJ, Stewart CR, Hack E. 1989. Pyrroline-5-carboxylate reductase is in pea Pisum sativum L. leaf chloroplasts. Plant Physiology 91: 581586.
  • da Rocha IM, Vitorello VA, Silva JS, Ferreira-Silva SL, Viégas RA, Silva EN, Silveira JA. 2012. Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves. Journal of Plant Physiology 169: 4149.
  • Ruiz JM, Sánchez E, García PC, López-Lefebre LR, Rivero RM, Romero L. 2002. Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock. Phytochemistry 59: 473478.
  • Senthil-Kumar M, Mysore KS. 2012. Ornithine-δ-aminotransferase and proline dehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response. Plant, Cell & Environment 35: 13291343.
  • Sharma S, Villamor JG, Verslues PE. 2011. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiology 157: 292304.
  • Szabados L, Savouré A. 2010. Proline: a multifunctional amino acid. Trends in Plant Science 15: 8997.
  • Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E et al. 2008. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant Journal 53: 1128.
  • Szoke A, Miao GH, Hong Z, Verma DP. 1992. Subcellular location of δ1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiology 99: 16421649.
  • Takahashi H, Takahara K, Hashida SN, Hirabayashi T, Fujimori T, Kawai-Yamada M, Yamaya T, Yanagisawa S, Uchimiya H. 2009. Pleiotropic modulation of carbon and nitrogen metabolism in Arabidopsis plants overexpressing the NAD kinase2 gene. Plant Physiology 151: 100113.
  • Turchetto-Zolet AC, Margis-Pinheiro M, Margis R. 2009. The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Molecular Genetics and Genomics 281: 8797.
  • Verbruggen N, Hermans C. 2008. Proline accumulation in plants: a review. Amino Acids 35: 753759.
  • Verbruggen N, Villarroel R, Van Montagu M. 1993. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiology 103: 771781.
  • Verslues PE, Sharma S. 2010. Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8: e0140.
  • Williams I, Frank L. 1975. Improved chemical synthesis and enzymatic assay of δ1-pyrroline-5-carboxylic acid. Analytical Biochemistry 64: 8597.
  • Zhang C, Lu Q, Verma DPS. 1995. Removal of feedback inhibition of δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. Journal of Biological Chemistry 270: 2049120496.