SEARCH

SEARCH BY CITATION

Keywords:

  • Alternaria alternata ;
  • biosynthetic gene cluster;
  • cytochrome P450 monooxygenase;
  • host-selective toxin;
  • secondary metabolism;
  • splicing error

Summary

  • The filamentous fungus Alternaria alternata includes seven pathogenic variants (pathotypes), which produce different host-selective toxins and cause disease on different plants. The Japanese pear, strawberry and tangerine pathotypes produce AK-toxin, AF-toxin and ACT-toxin, respectively, which have a common structural moiety, 9,10-epoxy-8-hydroxy-9-methyl-decatrienoic acid (EDA).
  • Here, we identified a new gene, AKT7 (AK-toxin biosynthetic gene 7), from the Japanese pear pathotype, which encodes a cytochrome P450 monooxygenase and functions to limit AK-toxin production.
  • AKT7 homologs were found in the strawberry pathotype, but not the tangerine pathotype. However, the strawberry pathotype homolog appeared to include a premature stop codon. Although the Japanese pear pathotype strain has multiple copies of AKT7, a single-copy disruption resulted in mutants with increased production of AK-toxin and EDA. AKT7 overexpression in the three pathotypes caused marked reductions of toxin and EDA production, suggesting that Akt7 catalyzes a side reaction of EDA or its precursor. AKT7 overexpression caused reduced virulence in these pathotypes. We also found that AKT7 transcripts predominantly include misspliced mRNAs, which have premature stop codons.
  • Our observations suggest that the AK-toxin production required for full virulence is regulated in a complex way by the copy number and intron information content of AKT7.