SEARCH

SEARCH BY CITATION

References

  • Adam L, Ellwood S, Wilson I, Saenz G, Xiao S, Oliver RP, Turner JG, Somerville S. 1999. Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistance to these two powdery mildew pathogens. Molecular Plant–Microbe Interactions 12: 10311343.
  • de Almeida Engler J, Favery B, Engler G, Abad P. 2005. Loss of susceptibility as an alternative for nematode resistance. Current Opinion in Biotechnology 16: 112117.
  • Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S, Werck-Reichhart D. 2011. Cytochromes p450. The Arabidopsis Book 9: e0144.
  • Bak S, Feyereisen R. 2001. The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiology 127: 108118.
  • Bednarek P, Osbourn A. 2009. Plant–microbe interactions: chemical diversity in plant defense. Science 324: 746748.
  • Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A et al. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323: 101106.
  • Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, Mizzi L, Soloviev M, Szabados L, Molthoff JW, Schipper B et al. 2008. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS ONE 3: e2068.
  • Bessire M, Chassot C, Jacquat AC, Humphry M, Borel S, Petetot JM, Metraux JP, Nawrath C. 2007. A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO Journal 26: 21582168.
  • Boller T, Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Reviews of Plant Biology 60: 379406.
  • Dawson GW, Hick AJ, Bennett RN, Donald A, Pickett JA, Wallsgrove RM. 1993. Synthesis of glucosinolate precursors and investigations into the biosynthesis of phenylalkyl- and methylthioalkylglucosinolates. Journal of Biological Chemistry 268: 2715427159.
  • Drumm JE, Adams JB, Brown RJ, Campbell CL, Erbes DL, Hall WT, Hartzell SL, Holliday MJ, Kleier DA, Martin MJ et al. 1995. Oxime fungicides – highly active broad-spectrum protectants. In: Baker DR, Fenyes JG, Basarab GS, eds. Synthesis and chemistry of agrochemicals IV. ACS Symposium Series 584. Washington, DC, USA: American Chemical Society, 396405.
  • Fan J, Crooks C, Creissen G, Hill L, Fairhurst S, Doerner P, Lamb C. 2011. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science 331: 11851188.
  • Green JR, Carver TL, Gurr SJ. 2002. The formation and function of infection and feeding structures. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TL, eds. The powdery mildews: a comprehensive treatise. St Paul, MN, USA: APS Press, 6682.
  • Gronover CS, Kasulke D, Tudzynski P, Tudzynski B. 2001. The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Molecular Plant–Microbe Interactions 14: 12931302.
  • Hansen CH, Du L, Naur P, Olsen CE, Axelsen KB, Hick AJ, Pickett JA, Halkier BA. 2001. CYP83b1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. Journal of Biological Chemistry 276: 2479024796.
  • Hansjakob A, Bischof S, Bringmann G, Riederer M, Hildebrandt U. 2010. Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner. New Phytologist 188: 10391054.
  • Hansjakob A, Riederer M, Hildebrandt U. 2012. Appressorium morphogenesis and cell cycle progression are linked in the grass powdery mildew fungus Blumeria graminis. Fungal Biology 116: 890901.
  • Haughn GW, Davin L, Giblin M, Underhill EW. 1991. Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana: the glucosinolates. Plant Physiology 97: 217226.
  • Hemm MR, Ruegger MO, Chapple C. 2003. The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15: 179194.
  • Höfer R, Briesen I, Beck M, Pinot F, Schreiber L, Franke R. 2008. The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis. Journal of Experimental Botany 59: 23472360.
  • Hückelhoven R. 2005. Powdery mildew susceptibility and biotrophic infection strategies. FEMS Microbiology Letters 245: 917.
  • Hückelhoven R, Eichmann R, Weis C, Hoefle C, Proels RK. 2013. Genetic loss of susceptibility: a costly route to disease resistance? Plant Pathology 62(Suppl 1): 5662.
  • Hückelhoven R, Panstruga R. 2011. Cell biology of the plant–powdery mildew interaction. Current Opinion in Plant Biology 14: 738746.
  • Inada N, Savory EA. 2011. Inhibition of prepenetration processes of the powdery mildew Golovinomyces orontii on host inflorescence stems is reduced in the Arabidopsis cuticular mutant cer3 but not in cer1. Journal of General Plant Pathology 77: 273281.
  • Ishikawa T, Watanabe N, Nagano M, Kawai-Yamada M, Lam E. 2011. Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death and Differentiation 18: 12711278.
  • Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V, Kogel KH, Schäfer P. 2011. Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiology 156: 726740.
  • Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher GB. 2003. An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15: 25032513.
  • Kolattukudy PE, Rogers LM, Li D, Hwang CS, Flaishman MA. 1995. Surface signaling in pathogenesis. Proceedings of the National Academy of Sciences of the USA 92: 40804087.
  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D et al. 2005. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310: 11801183.
  • Lolle SJ, Berlyn GP, Engstrom EM, Krolikowski KA, Reiter WD, Pruitt RE. 1997. Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle. Developmental Biology 189: 311321.
  • Maekawa T, Kufer TA, Schulze-Lefert P. 2011. NLR functions in plant and animal immune systems: so far and yet so close. Nature Immunology 12: 817826.
  • Micali C, Göllner K, Humphry M, Consonni C, Panstruga R. 2008. The powdery mildew disease of Arabidopsis: a paradigm for the interaction between plants and biotrophic fungi. The Arabidopsis Book 6: e0115.
  • Møller BL. 2010. Plant science. Dynamic metabolons. Science 330: 13281329.
  • Morrissey JP, Osbourn AE. 1999. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiology and Molecular Biology Reviews 63: 708724.
  • Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA. 2003. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiology 133: 6372.
  • Nielsen KA, Hrmova M, Nielsen JN, Forslund K, Ebert S, Olsen CE, Fincher GB, Møller BL. 2006. Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus. Planta 223: 10101023.
  • Nongbri PL, Johnson JM, Sherameti I, Glawischnig E, Halkier BA, Oelmüller R. 2012. Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica. Molecular Plant–Microbe Interactions 25: 11861197.
  • Pavan S, Jacobsen E, Visser RG, Bai Y. 2010. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Molecular Breeding 25: 112.
  • Pinot F, Beisson F. 2011. Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles. FEBS Journal 278: 195205.
  • Podila GK, Rogers L, Kolattukudy PE. 1993. Chemical signals from avocado wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiology 103: 267272.
  • Reuber TL, Plotnikova JM, Dewdney J, Rogers EE, Wood W, Ausubel FM. 1998. Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant Journal 16: 473485.
  • Sakurada K, Ikegaya H, Ohta H, Fukushima H, Akutsu T, Watanabe K. 2009. Effects of oximes on mitochondrial oxidase activity. Toxicology Letters 189: 110114.
  • Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. 2006. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry 78: 779787.
  • Sønderby IE, Burow M, Rowe HC, Kliebenstein DJ, Halkier BA. 2010. A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiology 153: 348363.
  • Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, Kliebenstein DJ. 2007. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS ONE 2: e1322.
  • Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y. 2011. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant Journal 67: 8193.
  • Thordal-Christensen H. 2003. Fresh insights into processes of nonhost resistance. Current Opinion in Plant Biology 6: 351357.
  • Tsuba M, Katagiri C, Takeuchi Y, Takada Y, Yamaoka N. 2002. Chemical factors of the leaf surface involved in the morphogenesis of Blumeria graminis. Physiological and Molecular Plant Pathology 60: 5157.
  • Wang Y, Bouwmeester K, van de Mortel JE, Shan W, Govers F. 2013. A novel Arabidopsis–oomycete pathosystem: differential interactions with Phytophthora capsici reveal a role for camalexin, indole glucosinolates and salicylic acid in defence. Plant, Cell & Environment 36: 11921203.
  • Weis C, Pfeilmeier S, Glawischnig E, Isono E, Pachl F, Hahne H, Kuster B, Eichmann R, Hückelhoven R. 2013. Co-immunoprecipitation-based identification of putative BAX INHIBITOR-1-interacting proteins involved in cell death regulation and plant–powdery mildew interactions. Molecular Plant Pathology 14: 791802.
  • Wittstock U, Halkier BA. 2002. Glucosinolate research in the Arabidopsis era. Trends in Plant Science 7: 263270.
  • Yin R, Messner B, Faus-Kessler T, Hoffmann T, Schwab W, Hajirezaei MR, von Saint Paul V, Heller W, Schäffner AR. 2012. Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. Journal of Experimental Botany 63: 24652478.
  • Zabka V, Stangl M, Bringmann G, Vogg G, Riederer M, Hildebrandt U. 2008. Host surface properties affect prepenetration processes in the barley powdery mildew fungus. New Phytologist 177: 251263.