SEARCH

SEARCH BY CITATION

References

  • Amelung W, Zhang X. 2001. Determination of amino acid enantiomers in soils. Soil Biology & Biochemistry 33: 553562.
  • Bazzaz FA, Coleman JS, Morse SR. 1990. Growth responses of 7 major co-occurring tree species of the Northeastern United States to elevated CO2. Canadian Journal of Forest Research 20: 14791484.
  • Chapin FS III, Vitousek PM, Van Cleve KV. 1986. The nature of nutrient limitation in plant communities. American Naturalist 127: 4858.
  • Chapman JA, King JS, Pregitzer KS, Zak DR. 2005. Effects of elevated CO2 and tropospheric O3 on tree fine root decomposition. Tree Physiology 25: 15011510.
  • Coûteaux MM, Kurz C, Bottner P, Andraschi A. 1999. Influence of increased atmospheric CO2 concentration on quality of plant material and litter decomposition. Tree Physiology 19: 301311.
  • Couture JJ, Meehan TD, Lindroth RL. 2012. Atmospheric change alters foliar quality of host trees and performance of two outbreak insect species. Oecologia 168: 863876.
  • Dickson RE, Lewin KF, Isebrands JG, Coleman MD, Heilman WE, Rienenscheider DE, Sober J, Host GE, Zak DR, Hendrey GR et al. 2000. Forest atmosphere carbon transfer storage-II (FACTS II) – the aspen free-air CO2 and O3 enrichment (FACE) project in an overview. St Paul, MN, USA: USDA forest service north central research station general tech rep NC-214.
  • Ehleringer JR, Buchmann N, Flanagan LB. 2000. Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications 10: 412422.
  • Fahey TJ, Hughes JW. 1994. Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook experimental forest, NH. Journal of Ecology 82: 533548.
  • Finzi AC, Allen AS, Delucia EH, Ellsworth DS, Schlesinger WH. 2001. Forest litter production, chemistry, and decomposition following 2 years of free-air CO2 enrichment. Ecology 82: 470484.
  • Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME et al. 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, USA 104: 1401414019.
  • Hendrick RL, Pregitzer KS. 1992a. The demography of fine roots in a northern hardwood forest. Ecology 73: 10941104.
  • Hendrick RL, Pregitzer KS. 1992b. Spatial variation in tree root distribution and growth associated with minirhizotrons. Plant and Soil 143: 283288.
  • Hofmockel KS, Schlesinger WH, Jackson RB. 2007. Effects of elevated atmospheric carbon dioxide on amino acid and NH4+-N cycling in a temperate pine ecosystem. Global Change Biology 13: 19501959.
  • Hofmockel KS, Zak DR, Moran KK, Jastrow JD. 2011. Changes in forest soil organic matter pools after a decade of elevated CO2 and O3. Soil Biology & Biochemistry 43: 15181527.
  • Högy P, Keck M, Niehaus K, Franzaring J, Fangmeier A. 2010. Effects of atmospheric CO2 enrichment on biomass, yield, and low molecular weight metabolites in wheat grain. Journal of Cereal Science 52: 215220.
  • Holmes WE, Zak DR, Pregitzer KS, King JS. 2003. Soil nitrogen transformations under Populus tremuloides, Betula papyrifera and Acer saccharum following 3 years exposure to elevated CO2 and O3. Global Change Biology 9: 17431750.
  • Holmes WE, Zak DR, Pregitzer KS, King JS. 2006. Elevated CO2 and O3 alter soil nitrogen transformations beneath trembling aspen, paper birch, and sugar maple. Ecosystems 9: 13541363.
  • Holton MK, Lindroth RL, Nordheim EV. 2003. Foliar quality influences tree-herbivore-parasitoid interactions, effects of elevated CO2, O3, and genotype. Oecologia 137: 233244.
  • Hopkins FM, Torn MS, Trumbore SE. 2012. Warming accelerates decomposition of decades-old carbon in forest soils. Proceedings of the National Academy of Sciences, USA 109: E1753E1761.
  • Hutchings MJ, John EA. 2004. The effects of environmental heterogeneity on root growth and root/shoot partitioning. Annals of Botany 94: 18.
  • Iversen CM. 2010. Digging deeper: fine root responses to rising atmospheric [CO2] in forested ecosystems. New Phytologist 186: 346357.
  • Iversen CM, Norby RJ. 2008. Nitrogen limitation in a sweetgum plantation, implications for carbon allocation and storage. Canadian Journal of Forest Research 38: 10211032.
  • Jackson RB, Mooney HA, Schulze E-D. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences, USA 94: 73627366.
  • Johnson RM, Pregitzer KS. 2007. Concentration of sugars, phenolic acids, and amino acids in forest soils exposed to elevated atmospheric CO2 and O3. Soil Biology & Biochemistry 39: 31593166.
  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A. 2005. Dissolved organic nitrogen uptake by plants – an important N uptake pathway? Soil Biology & Biochemistry 37: 413423.
  • Jones DL, Kielland K. 2002. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biology & Biochemistry 34: 749756.
  • Karnosky DF. 2003. Impacts of elevated CO2 on forest trees and forest ecosystems, knowledge gaps. Environment International 29: 161169.
  • Karnosky DF, Pregitzer KS, Zak DR, Kubiske ME, Hendrey GR, Weinstein D, Percy KE. 2005. Scaling ozone responses of forest trees to the ecosystem level. Plant, Cell & Environment 28: 965981.
  • King JS, Kubiske ME, Pregitzer KS, Hendrey GR, McDonald EP, Giardina CP, Quinn VS, Karnosky DF. 2005. Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytologist 168: 623636.
  • King JS, Pregitzer KS, Zak DR, Sober J, Isebrands JG, Dickson RE, Hendrey GR, Karnosky DF. 2001. Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affect by elevated atmospheric CO2 and tropospheric O3. Oecologia 128: 237250.
  • Köchy M, Wilson SD. 1997. Litter decomposition and nitrogen dynamics in aspen forest and mixed-grass prairie. Ecology 78: 632739.
  • Kubiske ME, Quinn VS, Marquardt PE, Karnosky DF. 2007. Effects of elevated atmospheric CO2 and/or O3 on intra- and interspecific competitive ability of aspen. Plant Biology 9: 342355.
  • Kuzyakov YV. 2001. Tracer studies of carbon translocation by plants from the atmosphere into the soil (a review). Eurasian Soil Science 34: 2842.
  • Larson JL, Zak DR, Sinsabaugh RL. 2002. Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Science Society of America Journal 66: 18481856.
  • Lincoln DE, Fajer ED, Johnson RH. 1993. Plant–insect herbivore interactions in elevated CO2 environments. Trends in Ecology and Evolution 8: 6468.
  • Lindroth RL. 2010. Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology 36: 221.
  • Lindroth RL, Kopper BJ, Parsons WFJ, Bockheim JG, Karnosky DF, Hendrey GR, Isebrands JG, Sober J. 2001. Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environmental Pollution 115: 395404.
  • Liu L, King JS, Giardina CP. 2005. Effects of elevated atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch ecosystems. Tree Physiology 15: 15111522.
  • Liu L, King JS, Giardina CP. 2007. Effects of elevated atmospheric CO2 and tropospheric O3 on nutrient dynamics: decomposition of leaf litter in trembling aspen and paper birch communities. Plant and Soil 299: 6582.
  • Liu L, King JS, Giardina CP, Booker FL. 2009. The influence of chemistry, production and community composition on leaf litter decomposition under elevated atmospheric CO2 and tropospheric O3 in a northern hardwood ecosystem. Ecosystems 12: 401416.
  • Macko SA, Uhle ME, Engel MH, Andrusevich V. 1997. Stable nitrogen isotope analysis of amino acid enantiomers by gas chromatography/combustion/isotope ratio mass spectrometry. Analytical Chemistry 69: 926929.
  • Mattson WJ, Julkunen-Tiitto R, Herms DA. 2005. CO2 enrichment and carbon partitioning to phenolics, do plant responses accord better with the protein competition of the growth-differentiation balance models? Oikos 111: 337347.
  • McClaugherty CA, Abern JD, Melillo JM. 1984. Decomposition dynamics of fine roots in forested ecosystems. Oikos 42: 378386.
  • McGuire AD, Melillo JM, Joyce LA. 1995. The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide. Annual Review of Ecology and Systematics 26: 473503.
  • Meehan TD, Crossley MS, Lindroth RL. 2010. Impacts of elevated CO2 and O3 on aspen leaf litter chemistry and earthworm and springtail productivity. Soil Biology & Biochemistry 42: 11321137.
  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R et al. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences, USA 102: 1805218056.
  • Norby RJ, Hanson PJ, O'Neill EG, Tshaplinki TJ, Weltzin JF, Hansen RA, Cheng W, Wullschleger SD, Gunderson CA, Edwards NT et al. 2002. Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecological Applications 12: 12611266.
  • Norby RJ, Iversen CM. 2006. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest. Ecology 87: 514.
  • Norby RJ, Zak DR. 2011. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annual Review of Ecology, Evolution, and Systematics 42: 181203.
  • Oksanen E, Sober J, Karnosky DF. 2001. Impacts of elevated CO2 and/or O3 on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the aspen FACE experiment. Environmental Pollution 115: 437446.
  • Parsons WFJ, Bockheim JG, Lindroth RL. 2008. Independent, interactive, and species-specific responses of leaf litter decomposition to elevated CO2 and O3 in a northern hardwood forest. Ecosystems 11: 505519.
  • Peñuelas J, Estiarte M. 1998. Can elevated CO2 affect secondary metabolism and ecosystem function? Trends in Ecology & Evolution 13: 2024.
  • Phillips RP, Bernhardt ES, Schlesinger WH. 2009. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda L.) seedlings as an N-mediated response. Tree Physiology 29: 15131523.
  • Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC. 2012. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecology Letters 15: 10421049.
  • Pregitzer KS, Burton AJ, King JS, Zak D. 2008. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. New Phytologist 180: 153161.
  • Rasse DP. 2002. Nitrogen deposition and atmospheric CO2 interactions on fine root dynamics in temperate forests: a theoretical model analysis. Global Change Biology 8: 486503.
  • Rejsek K, Formanek P, Vranova V. 2010. The soil amino acids: quality, distribution, and site ecology. New York, NY, USA: Nova Science Publishers Inc.
  • Sicher RC. 2008. Effects of CO2 enrichments on soluble amino acids and organic acids in barley primary leaves as a function of age, photoperiod and chlorosis. Plant Science 174: 576582.
  • Sun YC, Jing BB, Ge F. 2009. Response of amino acids changes in Aphis gossypii (Glover.) to elevated CO2 levels. Journal of Applied Entomology 133: 189197.
  • Talhelm AF, Pregitzer KS, Zak DR. 2009. Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon. Ecology Letters 12: 12191228.
  • Wang N, Nobel PS. 1996. Doubling the CO2 concentration enhanced the activity of carbohydrate-metabolism enzymes, source carbohydrate production, photoassimilate transport, and sink strength for Opunita ficus-indica. Plant Physiology 110: 893902.
  • Wustman BA, Oksanen E, Karnosky DF, Noormets A, Isebrands JG, Pregitzer KS, Hendrey GR, Sober J, Podila GK. 2001. Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity, can CO2 ameliorate the harmful effects of O3? Environmental Pollution 115: 473481.
  • Zak DR, Holmes WE, Pregitzer KS. 2007. Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems. Ecology 88: 26302639.
  • Zak DR, Pregitzer KS, Kubiske ME, Burton AJ. 2011. Forest productivity under elevated CO2 and O3, positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2. Ecology Letters 14: 12201226.