SEARCH

SEARCH BY CITATION

References

  • Allen GP. 2006. An automated pollen recognition system. Master's thesis, Massey University, New Zealand.
  • Bechar A, Gan-Mor S, Vaknin Y, Shemulevich I, Ronen B, Eisikowitch D. 1997. An image analysis technique for accurate counting of pollen on stigmas. New Phytologist 137: 639643.
  • Boucher A, Hidalgo PJ, Thonnat M, Belmonte J, Galan C, Bonton P, Tomczak R. 2002. Development of a semi-automatic system for pollen recognition. Aerobiologia 18: 195201.
  • Bush MB, Weng C. 2007. Introducing a new (freeware) tool for palynology. Journal of Biogeography 34: 377380.
  • Chun C, Hendriks EA, Duin RPW, Reiber JHC, Hiemstra PS, de Weger LA, Stoel B. 2006. Feasibility study on automated recognition of allergenic pollen: grass, birch and mugwort. Aerobiologia 22: 275284.
  • Costa CM, Yang S. 2009. Counting pollen grains using readily available, free image processing and analysis software. Annals of Botany 104: 10051010.
  • Dajoz I. 1999. The distribution of pollen heteromorphism in Viola: ecological and morphological correlates. Evolutionary Ecology Research 1: 97109.
  • De Sa-Otero MP, Gonzalez AP, Rodriguez-Damian M, Cernadas E. 2004. Computer-aided identification of allergenic species of Urticaceae pollen. Grana 43: 224230.
  • Dell'Anna R, Lazzeri P, Frisanco M, Monti F, Malvezzi Campeggi F, Gottardini E, Bersani M. 2009. Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning. Analytical and Bioanalytical Chemistry 394: 14431452.
  • Dhawale VR, Tidke JA, Dudul SV. 2013. Neural network based classification of pollen grains. 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI) 22–25 August 2013. Mysore, India:IEEE – Institute of Electrical and Electronics Engineers, 7984.
  • Ejsmond MJ, Wrońska-Pilarek D, Ejsmond A, Dragosz-Kluska D, Karpińska-Kołaczek M, Kozłowski J. 2011. Does climate affect pollen morphology? Optimal size and shape of pollen grains under various desiccation intensity. Ecosphere 2: UNSP 117.
  • Flenley JR. 1968. The problem of pollen recognition. In: Clowes MB, Penny JP, eds. Problems of picture interpretation. Canberra, ACT, Australia: CSIRO, 141145.
  • Flenley JR. 2003. Some prospects for lake sediment analysis in the 21st century. Quaternary International 105: 7780.
  • France I, Duller AWG, Duller GAT, Lamb HF. 2000. A new approach to automated pollen analysis. Quaternary Science Reviews 19: 537546.
  • Gaston KJ, O'Neill MA. 2011. Automated species identification: why not? Philosophical Transactions of the Royal Society B 359: 655667.
  • Hirst JM. 1952. An automatic volumetric spore trap. Annals of Applied Biology 39: 257265.
  • Holt K, Allen G, Hodgson R, Marsland S, Flenley J. 2011. Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory. Review of Palynology and Palaeobotany 167: 175183.
  • Hoshimiya T. 2013. On the pollen detection with photoacoustic imaging. American Journal of Plant Sciences 4: 2932.
  • Ileva NP, Niessner R, Panne U. 2005. Characterisation and discrimination of pollen by Raman microscopy. Analytical and Bioanalytical Chemistry 381: 261267.
  • Johnsrud S, Yang H, Nayak A, Punyasena SW. 2013. Semi-automatic segmentation of pollen grains in microscopic images: a tool for three imaging modes. Grana 52: 181191.
  • Kawashima S, Clot B, Fujita T, Takahashi Y, Nakamura K. 2007. An algorithm and a device for counting airborne pollen automatically using laser optics. Atmospheric Environment 41: 79877993.
  • Kaya Y, Mesut P, Erez E, Fidan M. 2013. An expert classification system of pollen of Onopordum using a rough set approach. Review of Palaeobotany and Palynology 189: 5056.
  • Langford M, Taylor GE, Flenley JR. 1990. Computerized identification of pollen grains by texture analysis. Review of Palaeobotany and Palynology 64: 197203.
  • Li P, Flenley JR. 1999. Pollen texture identification using neural networks. Grana 38: 5964.
  • Li P, Treloar WJ, Flenley JR, Empson L. 2004. Towards automation of palynology 2: the use of texture measures and neural network analysis for automated identification of optical images of pollen grains. Journal of Quaternary Science 19: 755762.
  • MacLeod N, Benfield M, Culverhouse P. 2010. Time to automate identification. Nature 467: 154155.
  • Maher LJ. 1980. The confidence limit is a necessary statistic for relative and absolute pollen data. In: Proceedings of the Fourth International Palynological Conference, Lucknow, India, 1976/77, 152162.
  • Mirkin GR, Bagdasaryan LL. 1972. The feasibility of identifying paleontological objects with the aid of optical analyzing systems. Paleontology Journal 6: 103108.
  • Mitsumoto K, Yabusaki K, Aoyagi H. 2009. Classification of pollen species using autofluorescence image analysis. Journal of Bioscience and Bioengineering 107: 9094.
  • Nguyen NR, Donlason-Matasci M, Shin MC. 2013. Improving pollen classification with less training effort. Proceedings of the IEEE Workshop on the Applications of Computer Visions (WACV), Clearwater Beach, FL, USA. 17–18 January 2013. Washington, DC, USA: IEEE (Institute of Electrical and Electronics Engineers) Computer Society.
  • Parker EP, Trahan MW, Wagner JS, Rosenthal SE, Whitten WB, Gieray RA, Reilly PTA, Lazar AC, Ramsey JM. 2000. Detection and classification of individual airborne microparticles using laser ablation mass spectroscopy and multivariate analysis. Field Analytical Chemistry and Technology 4: 3142.
  • Punyasena SW, Tcheng DK, Wesseln C, Mueller PG. 2012. Classifying black and white spruce pollen using layered machine learning. New Phytologist 196: 937944.
  • Rodriguez-Damian M, Cernadas E, Formella A, Fernández-Delgado M, De Sá-Otero P. 2006. Automatic detection and classification of grains of pollen based on shape and texture. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 36: 531542.
  • Ronneberger O, Schultz E, Burkhardt H. 2002. Automated pollen recognition using 3D volume images from fluorescence microscopy. Aerobiologia 18: 107115.
  • Sivaguru M, Mander L, Fried G, Punyasena SW. 2012. Capturing the surface texture and shape of pollen: a comparison of microscopy techniques. PLoS ONE 7: e39129.
  • Stillman EC, Flenley JR. 1996. The needs and prospects for automation in palynology. Quaternary Science Reviews 15: 15.
  • Surbek M, Esen C, Schweiger G, Ostendorf A. 2011. Pollen characterisation and identification by elastically scattered light. Journal of Biophotonics 4: 4956.
  • Ticay-Rivas JR, delPozo-Baños M, Travieso CM, Arroyo-Hernández J, Pérez ST, Alonso JB, Mora-Mora F. 2011. Pollen classification based on geometrical, descriptors and colour features using decorrelation stretching method. In: Iliadis L, Maglogiannis I, Papadopoulos H, eds. Artificial Intelligence Applications and Innovations. IFIP Advances in Information and Communications Technology 364. Berlin, Germany: Springer, 342349.
  • Treloar WJ, Taylor GE, Flenley JR. 2004. Towards automation of palynology 1: analysis of pollen shape and ornamentation using simple geometric measures, derived from scanning electron microscope images. Journal of Quaternary Science 19: 745754.
  • Vezey EL, Skvarla JJ. 1990. Computerised feature analysis of exine sculpture patterns. Review of Palaeobotany and Palynology 64: 187196.
  • Witte HJL. 1988. Preliminary research into possibilities of automated pollen counting. Pollen et Spores 30: 111124.
  • Zhang Y, Fountain DW, Hodgson RM, Flenley JR, Gunetileke S. 2004. Towards automation of palynology 3: pollen pattern recognition using gabor transforms and digital moments. Journal of Quaternary Science 19: 763768.
  • Ziska L, Knowlton K, Rogers C, Dalan D, Tierney N, Elder M, Filley W, Shropshire J, Ford LB, Hedberg C et al. 2011. Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proceedings of the National Academy of Sciences, USA 108: 42484251.