SEARCH

SEARCH BY CITATION

References

  • Amor BB, Shaw SL, Oldroyd GE, Maillet F, Penmetsa RV, Cook D, Long SR, Denarie J, Gough C. 2003. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant Journal 34: 495506.
  • Antolin-Llovera M, Ried MK, Binder A, Parniske M. 2012. Receptor kinase signaling pathways in plant-microbe interactions. Annual Review Phytopathology 50: 451473.
  • Arrighi JF, Barre A, Ben Amor B, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet EP, Gherardi M, Huguet T et al. 2006. The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiology 142: 265279.
  • Beatty PH, Good AG. 2011. Plant science. Future prospects for cereals that fix nitrogen. Science 333: 416417.
  • Ben C, Toueni M, Montanari S, Tardin MC, Fervel M, Negahi A, Saint-Pierre L, Mathieu G, Gras MC, Noel D et al. 2012. Natural diversity in the model legume Medicago truncatula allows identifying distinct genetic mechanisms conferring partial resistance to Verticillium wilt. Journal of Experimental Botany 64: 317332.
  • Bensmihen S, de Billy F, Gough C. 2011. Contribution of NFP LysM domains to the recognition of Nod factors during the Medicago truncatula/Sinorhizobium meliloti symbiosis. PLoS ONE 6: e26114.
  • Bohlool BB, Ladha JK, Garrity DP, Geogre T. 1992. Biological nitrogen fixation for sustainable agriculture: a perspective. Plant and Soil 141: 111.
  • Boller T, Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology 60: 379406.
  • Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT, Maolanon N, Vinther M, Lorentzen A, Madsen EB, Jensen KJ et al. 2012. Legume receptors perceive the rhizobial lipochitin-oligosaccharide signal molecules by direct binding. Proceedings of the National Academy of Sciences, USA 109: 1385913864.
  • Buist G, Steen A, Kok J, Kuipers OP. 2008. LysM, a widely distributed protein motif for binding to (peptido)glycans. Molecular Microbiology 68: 838847.
  • Carlson RW, Sanjuan J, Bhat UR, Glushka J, Spaink HP, Wijfjes AH, van Brussel AA, Stokkermans TJ, Peters NK, Stacey G. 1993. The structures and biological activities of the lipo-oligosaccharide nodulation signals produced by type I and II strains of Bradyrhizobium japonicum. Journal of Biology Chemistry 268: 1837218381.
  • Charpentier M, Oldroyd G. 2010. How close are we to nitrogen-fixing cereals? Current Opinion in Plant Biology 13: 556564.
  • Day RB, Okada M, Ito Y, Tsukada K, Zaghouani H, Shibuya N, Stacey G. 2001. Binding site for chitin oligosaccharides in the soybean plasma membrane. Plant Physiology 126: 11621173.
  • De Mita S, Streng A, Bisseling T, Geurts R. 2014. Evolution of a symbiotic receptor through gene duplications in the legume–rhizobium mutualism. New Phytologist 201: 961972.
  • Denarie J, Debelle F, Prome JC. 1996. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annual Review of Biochemistry 65: 503535.
  • D'Haeze W, Holsters M. 2002. Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12: 79R105R.
  • Faulkner C, Petutschnig E, Benitez-Alfonso Y, Beck M, Robatzek S, Lipka V, Maule AJ. 2013. LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proceedings of the National Academy of Sciences, USA 110: 91669170.
  • Feng F, Zhou JM. 2012. Plant-bacterial pathogen interactions mediated by type III effectors. Current Opinion in Plant Biology 15: 469476.
  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin MH, Lin YH, Reid DE, Gresshoff PM. 2010. Molecular analysis of legume nodule development and autoregulation. Journal of Integrative Plant Biology 52: 6176.
  • Genre A, Chabaud M, Balzergue C, Puech-Pages V, Novero M, Rey T, Fournier J, Rochange S, Becard G, Bonfante P et al. 2013. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytologist 198: 190202.
  • Geurts R, Fedorova E, Bisseling T. 2005. Nod factor signaling genes and their function in the early stages of rhizobium infection. Current Opinion in Plant Biology 8: 346352.
  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y et al. 2007. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316: 13071312.
  • Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M, Desaki Y, Arima S, Squeglia F, Ruggiero A, Tokuyasu K et al. 2014. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proceedings of the National Academy of Sciences, USA 111: E404E413.
  • Hayashi T, Shimoda Y, Sato S, Tabata S, Imaizumi-Anraku H, Hayashi M. 2014. Rhizobial infection does not require the cortical expression of upstream common symbiosis genes responsible for the induction of Ca2+ spiking. Plant Journal 77: 146159.
  • Jones JD, Dangl JL. 2006. The plant immune system. Nature 444: 323329.
  • de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MH, Thomma BP. 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329: 953955.
  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences, USA 103: 1108611091.
  • Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M. 2010. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant & Cell Physiology 51: 13811397.
  • Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome JC, Denarie J. 1990. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781784.
  • Liang Y, Cao Y, Tanaka K, Thibivilliers S, Wan J, Choi J, Kang C, Qiu J, Stacey G. 2013. Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science 341: 13841387.
  • Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R. 2003. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302: 630633.
  • Liu B, Li JF, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi K et al. 2012a. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell 24: 34063419.
  • Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J et al. 2012b. Chitin-induced dimerization activates a plant immune receptor. Science 336: 11601164.
  • Lohmann GV, Shimoda Y, Nielsen MW, Jorgensen FG, Grossmann C, Sandal N, Sorensen K, Thirup S, Madsen LH, Tabata S et al. 2010. Evolution and regulation of the Lotus japonicus LsyM receptor gene family. Molecular Plant-Microbe Interactions 23: 510521.
  • Macho AP, Zipfel C. 2014. Plant PRRs and the activation of innate immune signaling. Molecular Cell 54: 263272.
  • Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N et al. 2003. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425: 637640.
  • Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB, Bek AS, Ronson CW, James EK, Stougaard J. 2010. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nature Communications 1: 10.
  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A et al. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469: 5863.
  • Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BP et al. 2012. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24: 322335.
  • Minami E, Kouchi H, Cohn JR, Ogawa T, Stacey G. 1996. Expression of the early nodulin, Enod40, in soybean roots in response to various lipo-chitin signal molecules. Plant Journal 10: 2332.
  • Mitra RM, Long SR. 2004. Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis. Plant Physiology 134: 595604.
  • Miwa H, Sun J, Oldroyd GE, Downie JA. 2006. Analysis of Nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. Molecular Plant-Microbe Interactions 19: 914923.
  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences, USA 104: 1961319618.
  • Morieri G, Martinez EA, Jarynowski A, Driguez H, Morris R, Oldroyd GE, Downie JA. 2013. Host-specific Nod-factors associated with Medicago truncatula nodule infection differentially induce calcium influx and calcium spiking in root hairs. New Phytologist 200: 656662.
  • Nakagawa T, Kaku H, Shimoda Y, Sugiyama A, Shimamura M, Takanashi K, Yazaki K, Aoki T, Shibuya N, Kouchi H. 2011. From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume–rhizobium symbiosis. Plant Journal 65: 169180.
  • Narusaka Y, Shinya T, Narusaka M, Motoyama N, Shimada H, Murakami K, Shibuya N. 2013. Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis. Plant Signaling & Behavior 8: e25345.
  • Ohnuma T, Onaga S, Murata K, Taira T, Katoh E. 2008. LysM domains from pteris ryukyuensis chitinase-A: a stability study and characterization of the chitin-binding site. Journal of Biological Chemistry 283: 51785187.
  • Okazaki S, Kaneko T, Sato S, Saeki K. 2013. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proceedings of the National Academy of Sciences, USA 110: 1713117136.
  • Oldroyd GE. 2013. Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology 11: 252263.
  • Oldroyd GE, Dixon R. 2014. Biotechnological solutions to the nitrogen problem. Current Opinion in Biotechnology 26: 1924.
  • Oldroyd GE, Downie JA. 2008. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annual Review of Plant Biology 59: 519546.
  • Oldroyd GE, Murray JD, Poole PS, Downie JA. 2011. The rules of engagement in the legume–rhizobial symbiosis. Annual Review of Genetics 45: 119144.
  • Op den Camp R, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju JS, Kudrna D, Wing R, Untergasser A et al. 2011. LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331: 909912.
  • Paparella C, Savatin DV, Marti L, De Lorenzo G, Ferrari S. 2014. The Arabidopsis thaliana LYSM-CONTAINING RECEPTOR-LIKE KINASE 3 regulates the cross talk between immunity and abscisic acid responses. Plant Physiology 165: 262276.
  • Petutschnig EK, Jones AM, Serazetdinova L, Lipka U, Lipka V. 2010. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. Journal of Biological Chemistry 285: 2890228911.
  • Pietraszewska-Bogiel A, Lefebvre B, Koini MA, Klaus-Heisen D, Takken FL, Geurts R, Cullimore JV, Gadella TW. 2013. Interaction of Medicago truncatula lysin motif receptor-like kinases, NFP and LYK3, produced in Nicotiana benthamiana induces defence-like responses. PLoS ONE 8: e65055.
  • Punja ZK, Zhang YY. 1993. Plant chitinases and their roles in resistance to fungal diseases. Journal of Nematology 25: 526540.
  • Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N et al. 2003. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425: 585592.
  • Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, Quistgaard EM, Albrektsen AS, James EK, Thirup S, Stougaard J. 2007. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO Journal 26: 39233935.
  • Redecker D, Kodner R, Graham LE. 2000. Glomalean fungi from the ordovician. Science 289: 19201921.
  • Rey T, Nars A, Bonhomme M, Bottin A, Huguet S, Balzergue S, Jardinaud MF, Bono JJ, Cullimore J, Dumas B et al. 2013. NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens. New Phytologist 198: 875886.
  • Rival P, de Billy F, Bono JJ, Gough C, Rosenberg C, Bensmihen S. 2012. Epidermal and cortical roles of NFP and DMI3 in coordinating early steps of nodulation in Medicago truncatula. Development 139: 33833391.
  • Rogers C, Oldroyd GE. 2014. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. Journal of Experimental Botany 65: 19391946.
  • Sanchez-Vallet A, Saleem-Batcha R, Kombrink A, Hansen G, Valkenburg DJ, Thomma BP, Mesters JR. 2013. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. Elife 2: e00790.
  • Sanjuan J, Carlson RW, Spaink HP, Bhat UR, Barbour WM, Glushka J, Stacey G. 1992. A 2-o-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum. Proceedings of the National Academy of Sciences, USA 89: 87898793.
  • Schmitz AM, Harrison MJ. 2014. Signaling events during initiation of arbuscular mycorrhizal symbiosis. Journal of Integrative Plant Biology 56: 250261.
  • Shaw SL, Long SR. 2003. Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells. Plant Physiology 131: 976984.
  • Shibuya N, Minami E. 2001. Oligosaccharide signaling for defence responses in plant. Physiological and Molecular Plant Pathology 59: 223233.
  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H et al. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant Journal 64: 204214.
  • Shinya T, Motoyama N, Ikeda A, Wada M, Kamiya K, Hayafune M, Kaku H, Shibuya N. 2012. Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant & Cell Physiology 53: 16961706.
  • Stacey G, Gresshoff PM, Keen N. 1992. Friends and foes: new insights into plant-microbe interaction. Plant Cell 4: 11731179.
  • Stacey G, Shibuya N. 1997. Chitin recognition in rice and legumes. Plant and Soil 194: 161169.
  • Staehelin C, Schultze M, Tokuyasu K, Poinsot V, Prome JC, Kondorosi E, Kondorosi A. 2000. N-deacetylation of Sinorhizobium meliloti Nod factors increases their stability in the Medicago sativa rhizosphere and decreases their biological activity. Molecular Plant-Microbe Interactions 13: 7279.
  • Taylor T, Taylor E. 1997. The distribution and interactions of some paleozoic fungi. Review of Palaeobotany and Palynology 95: 8394.
  • Walker SA, Viprey V, Downie JA. 2000. Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers. Proceedings of the National Academy of Sciences, USA 97: 1341313418.
  • Wan J, Tanaka K, Zhang XC, Son GH, Brechenmacher L, Nguyen TH, Stacey G. 2012. LYK4, a LysM receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiology 160: 396406.
  • Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20: 471481.
  • Wang W, Xie ZP, Staehelin C. 2014. Functional analysis of chimeric lysin motif domain receptors mediating Nod factor-induced defense signaling in Arabidopsis thaliana and chitin-induced nodulation signaling in Lotus japonicus. Plant Journal 78: 5669.
  • Willmann R, Lajunen HM, Erbs G, Newman MA, Kolb D, Tsuda K, Katagiri F, Fliegmann J, Bono JJ, Cullimore JV et al. 2011. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences, USA 108: 1982419829.
  • Zhang J, Zhou JM. 2010. Plant immunity triggered by microbial molecular signatures. Molecular Plant 3: 783793.
  • Zhang XC, Wu X, Findley S, Wan J, Libault M, Nguyen HT, Cannon SB, Stacey G. 2007. Molecular evolution of lysin motif-type receptor-like kinases in plants. Plant Physiology 144: 623636.