• 1
    Boney CM, Verma A, Tucker R, et al. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115:e290e296.
  • 2
    McDonald SD, Han Z, Mulla S, et al. Overweight and obesity in mothers and risk of preterm birth and low birth weight infants: systematic review and meta-analyses. BMJ. 2010;341:c3428.
  • 3
    Instituto Nacional de Salud Pública. Encuesta Nacional de Salud y Nutricion: Resultados Nacionales 2012. 2012. Available at:
  • 4
    Colchero MA, Sosa-Rubi SG. Heterogeneity of income and lifestyle determinants of body weight among adult women in Mexico, 2006. Soc Sci Med. 2012;75:120128.
  • 5
    Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303:235241.
  • 6
    Balarajan Y, Villamor E. Nationally representative surveys show recent increases in the prevalence of overweight and obesity among women of reproductive age in Bangladesh, Nepal, and India. J Nutr. 2009;139:21392144.
  • 7
    Instituto Brasileiro de Geografia e Estatistica. Pesquisa de orcamentos Familiares 2008–2009: antropometria e estado nutricional de criancas, adolescentes e adultos no Brasil. Rio de Janeiro: IBGE;2010.
  • 8
    Correia LL, da Silveira DM, e Silva AC, et al. Prevalence and determinants of obesity and overweight among reproductive age women living in the semi-arid region of Brazil [in Portuguese]. Cien Saude Colet. 2011;16:133145.
  • 9
    Seabra G, Padilha Pde C, de Queiroz JA, et al. Pregestational overweight and obesity: prevalence and outcome associated with pregnancy [in Portuguese]. Rev Bras Ginecol Obstet. 2011;33:348353.
  • 10
    Heslehurst N, Ells LJ, Simpson H, et al. Trends in maternal obesity incidence rates, demographic predictors, and health inequalities in 36,821 women over a 15-year period. BJOG. 2007;114:187194.
  • 11
    Sahu MT, Agarwal A, Das V, et al. Impact of maternal body mass index on obstetric outcome. J Obstet Gynaecol Res. 2007;33:655659.
  • 12
    Benkeser RM, Biritwum R, Hill AG. Prevalence of overweight and obesity and perception of healthy and desirable body size in urban, Ghanaian women. Ghana Med J. 2012;46:6675.
  • 13
    Mamun AA, Hayatbakhsh MR, O'Callaghan M, et al. Early overweight and pubertal maturation−pathways of association with young adults' overweight: a longitudinal study. Int J Obes (Lond). 2009;33:1420.
  • 14
    Wen X, Triche EW, Hogan JW, et al. Prenatal factors for childhood blood pressure mediated by intrauterine and/or childhood growth? Pediatrics. 2011;127:e713e721.
  • 15
    Armitage JA, Khan IY, Taylor PD, et al. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004;561:355377.
  • 16
    Barker D. Mothers, Babies and Diseases in Later Life. London: Churchill Livingstone; 1998.
  • 17
    Nathanielsz PW. Life in the Womb: The Origin of Health and Disease. Ithaca, NY: Promethean Press; 1999.
  • 18
    Igosheva N, Abramov AY, Poston L, et al. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS ONE. 2010;5:e10074.
  • 19
    Burton GJ, Fowden AL. Review: the placenta and developmental programming: balancing fetal nutrient demands with maternal resource allocation. Placenta. 2012;33(Suppl):S23S27.
  • 20
    Weaver IC, Meaney MJ, Szyf M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci U S A. 2006;103:34803485.
  • 21
    Nathanielsz PW, Ford SP, Long NM, et al. Interventions designed to prevent adverse fetal programming due to maternal obesity during pregnancy. Nutr Rev. 2013;71:present issue.
  • 22
    Gillman MW, Poston L. Maternal Obesity. New York: Cambridge University Press; 2012.
  • 23
    Bailey SW, Ayling JE. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci U S A. 2009;106:1542415429.
  • 24
    Burns JJ. Missing step in man, monkey and guinea pig required for the biosynthesis of L-ascorbic acid. Nature. 1957;180:553.
  • 25
    Hanson RW, Garber AJ. Phosphoenolpyruvate carboxykinase. I. Its role in gluconeogenesis. Am J Clin Nutr. 1972;25:10101021.
  • 26
    Nijland MJ, Mitsuya K, Li C, et al. Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability. J Physiol. 2010;588:13491359.
  • 27
    Kreuz S, Schoelch C, Thomas L, et al. Acetyl-CoA carboxylases 1 and 2 show distinct expression patterns in rats and humans and alterations in obesity and diabetes. Diabetes Metab Res Rev. 2009;25:577586.
  • 28
    Gupta A, Srinivasan M, Thamadilok S, et al. Hypothalamic alterations in fetuses of high fat diet-fed obese female rats. J Endocrinol. 2009;200:293300.
  • 29
    Kirk SL, Samuelsson AM, Argenton M, et al. Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS ONE. 2009;4:e5870.
  • 30
    Samuelsson AM, Matthews PA, Argenton M, et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension. 2008;51:383392.
  • 31
    Zambrano E, Martinez-Samayoa PM, Rodriguez-Gonzalez GL, et al. Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats. J Physiol. 2010;588:17911799.
  • 32
    Yan X, Zhu MJ, Xu W, et al. Up-regulation of Toll-like receptor 4/nuclear factor-kappaB signaling is associated with enhanced adipogenesis and insulin resistance in fetal skeletal muscle of obese sheep at late gestation. Endocrinology. 2010;151:380387.
  • 33
    McCurdy CE, Bishop JM, Williams SM, et al. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest. 2009;119:323335.
  • 34
    Morris MJ, Chen H. Established maternal obesity in the rat reprograms hypothalamic appetite regulators and leptin signaling at birth. Int J Obes (Lond). 2009;33:115122.
  • 35
    Samuelsson AM, Morris A, Igosheva N, et al. Evidence for sympathetic origins of hypertension in juvenile offspring of obese rats. Hypertension. 2010;55:7682.
  • 36
    Sullivan EL, Grove KL. Metabolic imprinting in obesity. Forum Nutr. 2010;63:186194.
  • 37
    Bayol SA, Simbi BH, Fowkes RC, et al. A maternal “junk food” diet in pregnancy and lactation promotes nonalcoholic fatty liver disease in rat offspring. Endocrinology. 2010;151:14511461.
  • 38
    Bouanane S, Merzouk H, Benkalfat NB, et al. Hepatic and very low-density lipoprotein fatty acids in obese offspring of overfed dams. Metabolism. 2010;59:17011709.
  • 39
    Roque FR, Briones AM, Garcia-Redondo AB, et al. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharmacol. 2013;168:686703.
  • 40
    Grant WF, Gillingham MB, Batra AK, et al. Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates. PLoS ONE. 2011;6:e17261.
  • 41
    Simopoulos AP. Essential fatty acids in health and chronic disease. Am J Clin Nutr. 1999;70(Suppl 3): S560S569.
  • 42
    Suter M, Bocock P, Showalter L, et al. Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates. FASEB J. 2011;25:714726.
  • 43
    Waddington CH. Gene regulation in higher cells. Science. 1969;166:639640.
  • 44
    Choi J, Li C, McDonald TJ, et al. Emergence of insulin resistance in juvenile baboon offspring of mothers exposed to moderate maternal nutrient reduction. Am J Physiol Regul Integr Comp Physiol. 2011;301:R757R762.
  • 45
    Waterland RA, Travisano M, Tahiliani KG, et al. Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond). 2008;32:13731379.
  • 46
    Yan X, Huang Y, Zhao JX, et al. Maternal obesity downregulates microRNA let-7g expression, a possible mechanism for enhanced adipogenesis during ovine fetal skeletal muscle development. Int J Obes (Lond). 2012;37:568575.
  • 47
    Hillebrand JJ, de Wied D, Adan RA. Neuropeptides, food intake and body weight regulation: a hypothalamic focus. Peptides. 2002;23:22832306.
  • 48
    Bouret SG. Developmental origins of obesity: energy balance pathways-appetite. The role of developmental plasticity of the hypothalamus. In: Gillman MG , Poston L , eds. Maternal Obesity. New York: Cambridge University Press; 2012:115123.
  • 49
    Bouret SG. Development of hypothalamic neural networks controlling appetite. Forum Nutr. 2010;63:8493.
  • 50
    Bouret SG, Simerly RB. Developmental programming of hypothalamic feeding circuits. Clin Genet. 2006;70:295301.
  • 51
    Grayson BE, Allen SE, Billes SK, et al. Prenatal development of hypothalamic neuropeptide systems in the nonhuman primate. Neuroscience. 2006;143:975986.
  • 52
    Adam CL, Findlay PA, Chanet A, et al. Expression of energy balance regulatory genes in the developing ovine fetal hypothalamus at midgestation and the influence of hyperglycemia. Am J Physiol Regul Integr Comp Physiol. 2008;294:R1895R1900.
  • 53
    Long NM, Ford SP, Nathanielsz PW. Maternal obesity eliminates the neonatal lamb plasma leptin peak. J Physiol. 2011;589:14551462.
  • 54
    Rkhzay-Jaf J, O'Dowd JF, Stocker CJ. Maternal obesity and the fetal origins of the metabolic syndrome. Curr Cardiovasc Risk Rep. 2012;6:487495.
  • 55
    Chen H, Simar D, Morris MJ. Hypothalamic neuroendocrine circuitry is programmed by maternal obesity: interaction with postnatal nutritional environment. PLoS ONE. 2009;4:e6259.
  • 56
    Plagemann A, Heidrich I, Gotz F, et al. Obesity and enhanced diabetes and cardiovascular risk in adult rats due to early postnatal overfeeding. Exp Clin Endocrinol. 1992;99:154158.
  • 57
    Davidowa H, Li Y, Plagemann A. Altered responses to orexigenic (AGRP, MCH) and anorexigenic (alpha-MSH, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats. Eur J Neurosci. 2003;18:613621.
  • 58
    Glavas MM, Kirigiti MA, Xiao XQ, et al. Early overnutrition results in early-onset arcuate leptin resistance and increased sensitivity to high-fat diet. Endocrinology. 2010;151:15981610.
  • 59
    Fowden AL, Li J, Forhead AJ. Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc Nutr Soc. 1998;57:113122.
  • 60
    McDonald TJ, Nathanielsz PW. Bilateral destruction of the fetal paraventricular nuclei prolongs gestation in sheep. Am J Obstet Gynecol. 1991;165:764770.
  • 61
    Liggins GC, Kitterman JA, Campos GA, et al. Pulmonary maturation in the hypophysectomised ovine fetus. Differential responses to adrenocorticotrophin and cortisol. J Dev Physiol. 1981;3:114.
  • 62
    Thomas AL, Krane EJ, Nathanielsz PW. Changes in the fetal thyroid axis after induction of premature parturition by low dose continuous intravascular cortisol infusion to the fetal sheep at 130 days of gestation. Endocrinology. 1978;103:1723.
  • 63
    Unno N, Wong CH, Jenkins SL, et al. Blood pressure and heart rate in the ovine fetus: ontogenic changes and effects of fetal adrenalectomy. Am J Physiol. 1999;276:H248H256.
  • 64
    McMullen S, Langley-Evans SC, Gambling L, et al. A common cause for a common phenotype: the gatekeeper hypothesis in fetal programming. Med Hypotheses. 2012;78:8894.
  • 65
    Guzman C, Cabrera R, Cardenas M, et al. Protein restriction during fetal and neonatal development in the rat alters reproductive function and accelerates reproductive ageing in female progeny. J Physiol. 2006;572:97108.
  • 66
    Rodriguez JS, Rodriguez-Gonzalez GL, Reyes-Castro LA, et al. Maternal obesity in the rat programs male offspring exploratory, learning and motivation behavior: prevention by dietary intervention pre-gestation or in gestation. Int J Dev Neurosci. 2012;30:7581.
  • 67
    Magyar DM, Fridshal D, Elsner CW, et al. Time-trend analysis of plasma cortisol concentrations in the fetal sheep in relation to parturition. Endocrinology. 1980;107:155159.
  • 68
    Tuersunjiang N, Odhiambo JF, Long NM, et al. Diet reduction in obese ewes from early gestation prevents glucose-insulin dysregulation and returns fetal adiposity and organ development to control levels [published online ahead of print August 6, 2013]. Am J Physiol Endocrinol Metab. doi: 10.1152/ajpendo.00117.2013.
  • 69
    O'Connor DM, Blache D, Hoggard N, et al. Developmental control of plasma leptin and adipose leptin messenger ribonucleic acid in the ovine fetus during late gestation: role of glucocorticoids and thyroid hormones. Endocrinology. 2007;148:37503757.
  • 70
    Guo C, Li C, Myatt L, et al. Sexually dimorphic effects of maternal nutrient reduction on expression of genes regulating cortisol metabolism in fetal baboon adipose and liver tissues. Diabetes. 2013;62:11751185.
  • 71
    Carter MF, Dudley DJ, Nathanielsz PW. Fetal cortisol is evaluated in maternal obesity (MO). Reprod Sci. 2011;18:139A.
  • 72
    Dunn E, Kapoor A, Leen J, et al. Prenatal synthetic glucocorticoid exposure alters hypothalamic-pituitary-adrenal regulation and pregnancy outcomes in mature female guinea pigs. J Physiol. 2010;588:887899.
  • 73
    Kapoor A, Dunn E, Kostaki A, et al. Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and glucocorticoids. J Physiol. 2006;572(Pt 1):3144.
  • 74
    Drake AJ, Walker BR, Seckl JR. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol Regul Integr Comp Physiol. 2005;288:R34R38.
  • 75
    Banjanin S, Kapoor A, Matthews SG. Prenatal glucocorticoid exposure alters hypothalamic-pituitary-adrenal function and blood pressure in mature male guinea pigs. J Physiol. 2004;558:305318.
  • 76
    Sloboda DM, Moss TJ, Li S, et al. Prenatal betamethasone exposure results in pituitary-adrenal hyporesponsiveness in adult sheep. Am J Physiol Endocrinol Metab. 2007;292:E61E70.
  • 77
    de Vries A, Holmes MC, Heijnis A, et al. Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J Clin Invest. 2007;117:10581067.
  • 78
    Long NM, Shasa DR, Ford SP, et al. Growth and insulin dynamics in two generations of female offspring of mothers receiving a single course of synthetic glucocorticoids. Am J Obstet Gynecol. 2012;207:203 e201–208.
  • 79
    Long NM, Ford SP, Nathanielsz PW. Multigenerational effects of fetal dexamethasone exposure on the hypothalamic-pituitary-adrenal axis of first- and second-generation female offspring. Am J Obstet Gynecol. 2013;208:e217.
  • 80
    Sloboda DM, Moss TJ, Gurrin LC, et al. The effect of prenatal betamethasone administration on postnatal ovine hypothalamic-pituitary-adrenal function. J Endocrinol. 2002;172:7181.
  • 81
    Jones HN, Woollett LA, Barbour N, et al. High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J. 2009;23:271278.
  • 82
    Farley DM, Choi J, Dudley DJ, et al. Placental amino acid transport and placental leptin resistance in pregnancies complicated by maternal obesity. Placenta. 2010;31:718724.
  • 83
    Challier JC, Basu S, Bintein T, et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta. 2008;29:274281.
  • 84
    Farley D, Tejero ME, Comuzzie AG, et al. Feto-placental adaptations to maternal obesity in the baboon. Placenta. 2009;30:752760.
  • 85
    Tong JF, Yan X, Zhu MJ, et al. Maternal obesity downregulates myogenesis and beta-catenin signaling in fetal skeletal muscle. Am J Physiol Endocrinol Metab. 2009;296:E917E924.
  • 86
    Zhu MJ, Han B, Tong J, et al. AMP-activated protein kinase signalling pathways are down regulated and skeletal muscle development impaired in fetuses of obese, over-nourished sheep. J Physiol. 2008;586:26512664.
  • 87
    Ma Y, Zhu MJ, Zhang L, et al. Maternal obesity and overnutrition alter fetal growth rate and cotyledonary vascularity and angiogenic factor expression in the ewe. Am J Physiol Regul Integr Comp Physiol. 2010;299:R249R258.
  • 88
    Zhang L, Long NM, Hein SM, et al. Maternal obesity in ewes results in reduced fetal pancreatic beta-cell numbers in late gestation and decreased circulating insulin concentration at term. Domest Anim Endocrinol. 2011;40:3039.
  • 89
    Gnanalingham M, Hyatt M, Bispham J, et al. Maternal dexamethasone administration and the maturation of perirenal adipose tissue of the neonatal sheep. Organogenesis. 2008;4:188194.
  • 90
    Suter MA, Sangi-Haghpeykar H, Showalter L, et al. Maternal high-fat diet modulates the fetal thyroid axis and thyroid gene expression in a nonhuman primate model. Mol Endocrinol. 2012;26:20712080.
  • 91
    Wang J, Ma H, Tong C, et al. Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart. FASEB J. 2010;24:20662076.
  • 92
    Dong M, Zheng Q, Ford SP, et al. Maternal obesity, lipotoxicity and cardiovascular diseases in offspring. J Mol Cell Cardiol. 2012;55:111116.
  • 93
    Huang Y, Yan X, Zhao JX, et al. Maternal obesity induces fibrosis in fetal myocardium of sheep. Am J Physiol Endocrinol Metab. 2010;299:E968E975.
  • 94
    Lutfullah G, Ali SA, Abbasi A. Molecular mechanism of high altitude respiration: primary structure of a minor hemoglobin component from tufted duck (Aythya fuligula, Anseriformes). Biochem Biophys Res Commun. 2005;326:123130.
  • 95
    Soucy KG, Ryoo S, Benjo A, et al. Impaired shear stress-induced nitric oxide production through decreased NOS phosphorylation contributes to age-related vascular stiffness. J Appl Physiol. 2006;101:17511759.
  • 96
    Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:4484.
  • 97
    Szostak J, Laurant P. The forgotten face of regular physical exercise: a “natural” anti-atherogenic activity. Clin Sci (Lond). 2011;121:91106.
  • 98
    Wang XD, Vatamaniuk MZ, Wang SK, et al. Molecular mechanisms for hyperinsulinaemia induced by overproduction of selenium-dependent glutathione peroxidase-1 in mice. Diabetologia. 2008;51:15151524.
  • 99
    Thompson LP, Al-Hasan Y. Impact of oxidative stress in fetal programming. J Pregnancy. 2012;582748.
  • 100
    Shelley P, Martin-Gronert MS, Rowlerson A, et al. Altered skeletal muscle insulin signaling and mitochondrial complex II-III linked activity in adult offspring of obese mice. Am J Physiol Regul Integr Comp Physiol. 2009;297:R675R681.
  • 101
    Simmons RA. Role of metabolic programming in the pathogenesis of beta-cell failure in postnatal life. Rev Endocr Metab Disord. 2007;8:95104.
  • 102
    Simmons RA, Suponitsky-Kroyter I, Selak MA. Progressive accumulation of mitochondrial DNA mutations and decline in mitochondrial function lead to beta-cell failure. J Biol Chem. 2005;280:2878528791.
  • 103
    Sen S, Simmons RA. Maternal antioxidant supplementation prevents adiposity in the offspring of Western diet-fed rats. Diabetes. 2010;59:30583065.
  • 104
    Li HP, Chen X, Li MQ. Gestational diabetes induces chronic hypoxia stress and excessive inflammatory response in murine placenta. Int J Clin Exp Pathol. 2013;6:650659.