SEARCH

SEARCH BY CITATION

Keywords:

  • animal control over carbon cycling;
  • elemental stoichiometry;
  • environmental stress;
  • food chains;
  • metabolism;
  • physiological plasticity

Environmental warming due to global climate change is an important stressor that stands to alter organismal physiology and, ultimately, carbon cycling in ecosystems. Yet the theoretical framework for predicting warming effects on whole-ecosystem carbon balance by way of changes in organismal physiology remains rudimentary. This is because ecosystem science has yet to embrace principles of evolutionary ecology that offer the means to explain how environmental stress on organisms mediates ecosystem carbon dynamics. Here, using selected case studies and a theoretical model, I sketch out one framework that shows how increases in animal metabolic rates in response to thermal stress lead to phenotypically plastic shifts in animal elemental demand, from nitrogen-rich proteins that support production to carbon-rich soluble carbohydrates that support elevated energy demands. I further show how such a switch in resource selection alters the fate of carbon between atmospheric versus animal, plant, and soil pools. The framework shows that animals, despite having relatively low biomass representation in ecosystems, can nonetheless have disproportionately larger effects on carbon cycling in ecosystems whose effects are exacerbated by environmental stressors like climate warming.