Oncologic doses of zoledronic acid induce site specific suppression of bone modelling in rice rats


  • Funding information

    This work was supported by OSU and UK Faculty Startup Grant.

  • Cristina Exposto, Ulas Oz and Jason S Callard contributed equally to this work.

Structured Abstract


To examine the effect of zoledronic acid (ZOL) on cortical bone modelling and healing of extraction sockets in the jaw bones of a rodent model. We hypothesized ZOL suppresses both the bone formation in the modelling mode in the jaw bones and alters the extraction site healing.

Material & Methods

Rice rats were administered saline solution and two dose regimens of ZOL: 0.1 mg/kg, twice a week, for 4 weeks (n=17, saline=8 & ZOL=9) and a higher dose of 0.4 mg/kg, weekly, for 9 weeks (n=30, saline=15 & ZOL=15). Two pairs of fluorochrome bone labels were administered. Extraction of maxillary teeth was performed in maxilla. Mineral apposition rate, mineralizing surface and bone formation rate (BFR) were quantified on periodontal (PDL), alveolar and basal bone surfaces, and in the trabecular bone of proximal tibia. Bone volume (BV) was evaluated at extraction sockets. Multivariate Gaussian models were used to account for repeated measurements, and analyzes were conducted in SAS V9.3.


ZOL suppressed bone modelling (BFR/BS) at the PDL surfaces in the mandible (P<.05), but its effect was not significant at the periosteal surfaces of both jaws. BV for the healing sockets of ZOL treated animals was not significantly different (P=.07) compared to the saline group. ZOL suppressive effect was higher in the tibia compared to the jaws.


ZOL severely suppresses coupled remodelling in the tibia, and the suppression of bone formation in the modelling mode in the jaws demonstrates the site specific effects of ZOL in rice rats.