Get access

Ventricular Fibrillation Conduction through an Isthmus of Preserved Myocardium between Radiofrequency Lesions


  • Grants: This work was supported by Spanish Ministry of Science “Instituto de Salud Carlos III” Grants FIS PS09/02417 and RETIC REDINSCOR RD06/0003/0010, and by “Generalitat Valenciana” Grant PROMETEO 2010/093.

Address for reprints: Francisco J. Chorro, M.D., Ph.D., Servicio de Cardiología. Hospital Clínico Universitario, Avda. Blasco Ibañez 17, 46010, Valencia, Spain. Fax: 34963862658; e-mail:



Selective local acceleration of myocardial activation during ventricular fibrillation (VF) contributes information on the interactions between neighboring zones during the arrhythmia. This study analyzes these interactions, centering the observations on an isthmus of myocardium between two radiofrequency (RF) lesions.


In nine isolated rabbit hearts, a gap of preserved myocardium was established between two RF lesions in the anterolateral left ventricle (LV) wall. Before, during, and after increasing the spatial heterogeneity of VF by local myocardial stretching, VF epicardial recordings were obtained.


Local stretch in the anterior LV wall decreased the excitable window (17 ± 7 ms vs 26 ± 7 ms; P < 0.05) and increased the dominant frequency (DFr; 18.9 ± 5.0 Hz vs 15.2 ± 3.6 Hz; P < 0.05) in this zone, without changes in the non-stretched posterolateral zone (25 ± 4 ms vs 27 ± 6 ms, ns and 14.1 ± 2.7 Hz vs 14.3 ± 3.0 Hz, ns). The DFr ratio at both sides of the gap was inversely correlated to the excitable window ratio (R = −0.57; P = 0.002). Before (31% vs 26%), during (29% vs 22%), and after stretch suppression (35% vs 25%), the wavefronts passing through the gap from the posterolateral to the anterior LV wall were seen to predominate. The number of wavefronts that passed from the anterior to the posterolateral LV wall was related to the excitable window in this zone (R = 0.41; P = 0.03).


The VF acceleration induced in the stretched zone does not increase the flow of wavefronts toward the non-stretched zone in the adjacent gap of preserved myocardium. The absence of significant changes in the electrophysiological parameters of the non-stretched myocardium limits the arrival of wavefronts in this zone.

Get access to the full text of this article