Evolutionary patterns–tested with cladistics–and processes in relation to palaeoenvironments of the Upper Barremian genus Gassendiceras (Ammonitina, Lower Cretaceous)



Abstract:  Phylogenetic reconstruction of the Upper Barremian ammonite genus Gassendiceras (Gassendiceratinae) was performed using a cladistic analysis incorporating continuous data. Some morphological features were found to vary identically among all the analysed species and therefore carry no phylogenetic information (= symplesiomorphic). The single obtained cladogram allows interpreting the evolution of the Gassendiceras as an anagenetic succession of eight species, in stratigraphic order of appearance, Gassendiceras multicostatum, G. alpinum, G. hoheneggeri, G. rebouleti, G. bosellii, G. quelquejeui, G. coulletae and G. enayi. The clade Pseudoshasticrioceras/Imerites is derived from G. enayi, so the genus Gassendiceras appears to be paraphyletic. But here, we accept this fact as the best evolutive classification. The evolution over time of Gassendiceras is modulated by some processes, which could have constrained the inferred phylogenetic pattern with the drift of the global variability towards the most gracile forms over time. It is tempting to interpret this evolution as a constant selection over time of the Gassendiceras modulated by environmental control due to eustatic variation across a transgressive sequence. Thus, the most peramorphic (gracile) individuals seemed favoured at the expense of those most robust (paedomorphic).