SEARCH

SEARCH BY CITATION

Keywords:

  • Microalgae;
  • Dunaliella bardawil ;
  • photosynthesis;
  • sedoheptulose 1;
  • 7-bisphosphatase;
  • CO 2 ;
  • glycerol

Summary

Bioengineering of photoautotrophic microalgae into CO2 scrubbers and producers of value-added metabolites is an appealing approach in low-carbon economy. A strategy for microalgal bioengineering is to enhance the photosynthetic carbon assimilation through genetically modifying the photosynthetic pathways. The halotolerant microalgae Dunaliella posses an unique osmoregulatory mechanism, which accumulates intracellular glycerol in response to extracellular hyperosmotic stresses. In our study, the Calvin cycle enzyme sedoheptulose 1,7-bisphosphatase from Chlamydomonas reinhardtii (CrSBPase) was transformed into Dunaliella bardawil, and the transformant CrSBP showed improved photosynthetic performance along with increased total organic carbon content and the osmoticum glycerol production. The results demonstrate that the potential of photosynthetic microalgae as CO2 removers could be enhanced through modifying the photosynthetic carbon reduction cycle, with glycerol as the carbon sink.