• Baker, N.R. (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89113.
  • Ben-Amotz, A.. (1992). β-Carotene biosynthesis. In Dunaliella: Physiology, Biochemistry, and Biotechnology, (Ben-Amotz, A. ed.), pp. 205216. Boca Raton: CRC Press.
  • Ben-Amotz, A.. (2009). Bioactive Compounds: Glycerol Production, Carotenoid Production, Fatty Acids Production. In The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology, (Ben-Amotz, A. and Rao, S., ed.), pp. 189208. Enfield, New Hampshire: Science Publishers.
  • Ben-Amotz, A. and Avron, M. (1973) Role of glycerol in osmotic regulation of halophilic alga Dunaliella parva. Plant Physiol. 51, 875878.
  • Ben-Amotz, A., Polle, A. and Rao, S. (2009). The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology, 1st ed. Enfield, NH: Science Publishers.
  • Borowitzka, L.J. (1981) The microflora- adaptations to life in extremely saline lakes. Hydrobiologia 81-2, 3, 346.
  • Borowitzka, M.A. (1986) Microalgae as sources of fine chemicals. Microbiol. Sci. 3, 372375.
  • Brown, F.F., Sussman, I., Avron, M. and Degani, H. (1982) NMR-studies of glycerol permeability in lipid vesicles, erythrocytes and the alga Dunaliella. Biochim. Biophys. Acta, 690, 165173.
  • Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25, 294306.
  • Duarte, P. (2009). Photosynthesis- Energy Relationships in Dunaliella. In The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology, (Ben-Amotz, A., Rao, S. ed.), pp. 209230. Enfield, New Hampshire: Science Publishers.
  • Gimmler, H. and Hartung, W. (1988) Low permeability of the plasma-membrane of Dunaliella parva for solutes. J. Plant Physiol. 133, 165172.
  • Gorman, D.S. and Levine, R.P. (1965) Cytochrome F and plastocyanin- their sequence in photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Nat. Acad. Sci. U.S.A. 54, 16651667.
  • Harrison, E.P., Willingham, N.M., Lloyd, J.C. and Raines, C.A. (1998) Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta, 204, 2736.
  • Huang, G.H., Chen, F., Wei, D., Zhang, X.W. and Chen, G. (2010) Biodiesel production by microalgal biotechnology. Appl. Energy, 87, 3846.
  • Ishizaki, K., Chiyoda, S., Yamato, K.T. and Kohchi, T. (2008) Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol. 49, 10841091.
  • Johnson, X., Wostrikoff, K., Finazzi, G., Kuras, R., Schwarz, C., Bujaldon, S., Nickelsen, J., Stern, D.B., Wollman, F.A. and Vallon, O. (2010) MRL1, a conserved pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis. Plant Cell, 22, 234248.
  • Lefebvre, S., Lawson, T., Zakhleniuk, O.V., Lloyd, J.C. and Raines, C.A. (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol. 138, 451460.
  • Liska, A.J., Shevchenko, A., Pick, U. and Katz, A. (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol. 136, 28062817.
  • Miyagawa, Y., Tamoi, M. and Shigeoka, S. (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat. Biotechnol. 19, 965969.
  • Peers, G., Truong, T.B., Ostendorf, E., Busch, A., Elrad, D., Grossman, A.R., Hippler, M. and Niyogi, K.K. (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature, 462, 518U215.
  • Rao, S.. (2009). Cultivation, Growth Media, Division Rates and Applications of Dunaliella Species. In The Alga Dunaliella Biodiversity, Physiology, Genomics and Biotechnology, (Ben-Amotz, A. and Rao, S., eds.), pp. 4589. Enfield, New Hampshire: Science Publishers.
  • Robinson, S.P. (1981). Photosynthetic carbon reduction cycle. In The Biochemistry of Plants, (Hatch, M.D. ed.), pp. 193236. Academic Press: New York.
  • Sun, J. and Liu, D.Y. (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25, 13311346.
  • Tamoi, M., Nagaoka, M., Miyagawa, Y. and Shigeoka, S. (2006) Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol. 47, 380390.
  • Yokota, A.S.S.. (2008). Engineering Photosynthetic Pathways. In Bioenginnering and Molecular Biology of Plant Pathways, (Bohnert, H.J. ed.), pp. 81105. Elsevier/Pergamon: London.
  • Yu, H., Ito, T., Wellmer, F. and Meyerowitz, E.M. (2004) Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat. Genet. 36, 157161.