SEARCH

SEARCH BY CITATION

References

  • Andre, C., Haslam, R.P. and Shanklin, J. (2012) Feedback regulation of plastidic acetyl-CoA carboxylase by 18∶1-acyl carrier protein in Brassica napus. Proc. Natl Acad. Sci. USA, 109, 1010710112.
  • Badami, R.C. and Patil, K.B. (1980) Structure and occurrence of unusual fatty acids in minor seed oils. Prog. Lipid Res. 19, 119153.
  • Bafor, M. and Stymne, S. (1992) Substrate specificities of glycerol acylating enzymes from developing embryos of two Cuphea species. Phytochemistry, 31, 29732976.
  • Bafor, M., Jansson, L., Stobart, A.K. and Stymne, S. (1990) Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata. Biochem. J. 272, 3138.
  • Bao, X.M., Katz, S., Pollard, M. and Ohlrogge, J. (2002) Carbocyclic fatty acids in plants: Biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida. Proc. Natl Acad. Sci. USA, 99, 71727177.
  • Bao, X.M., Thelen, J.J., Bonaventure, G. and Ohlrogge, J.B. (2003) Characterization of cyclopropane fatty-acid synthase from Sterculia foetida. J. Biol. Chem. 278, 1284612853.
  • Bates, P.D. and Browse, J. (2011) The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. Plant J. 68, 387399.
  • Bates, P.D. and Browse, J. (2012) The significance of different diacylglycerol synthesis pathways on plant oil composition and bioengineering. Front. Plant Sci. 3, 147.
  • Bates, P.D., Fatihi, A., Snapp, A.R., Carlsson, A.S., Browse, J. and Lu, C. (2012) Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. Plant Physiol. 160, 15301539.
  • Baud, S. and Lepiniec, L. (2010) Physiological and developmental regulation of seed oil production. Prog. Lipid Res. 49, 235249.
  • Biester, E.M., Hellenbrand, J., Gruber, J., Hamberg, M. and Frentzen, M. (2012) Identification of avian wax synthases. BMC Biochem. 13, 4.
  • Bourgis, F., Kilaru, A., Cao, X., Ngando-Ebongue, G.F., Drira, N., Ohlrogge, J.B. and Arondel, V. (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc. Natl Acad. Sci. USA, 108, 1252712532.
  • Broadwater, J.A., Whittle, E. and Shanklin, J. (2002) Desaturation and hydroxylation. Residues 148 and 324 of Arabidopsis Fad2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. J. Biol. Chem. 277, 1561315620.
  • Broun, P., Boddupalli, S. and Somerville, C. (1998a) A bifunctional oleate 12-hydroxylase: desaturase from Lesquerella fendleri. Plant J. 13, 201210.
  • Broun, P., Shanklin, J., Whittle, E. and Somerville, C. (1998b) Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science, 282, 13151317.
  • Brown, A.P., Kroon, J.T.M., Swarbreck, D., Febrer, M., Larson, T.R., Graham, I.A., Caccamo, M. and Slabas, A.R. (2012) Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways. PLoS One, 7, e30100.
  • Burgal, J., Shockey, J., Lu, C., Dyer, J., Larson, T., Graham, I. and Browse, J. (2008) Metabolic engineering of hydroxy fatty acid production in plants. RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol. J. 6, 819831.
  • Cahoon, E.B., Shanklin, J. and Ohlrogge, J.B. (1992) Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proc. Natl Acad. Sci. USA, 89, 1118411188.
  • Cahoon, E.B., Cranmer, A.M., Shanklin, J. and Ohlrogge, J.B. (1994) Δ6 hexadecenoic acid is synthesized by the activity of a soluble Δ 6 palmitoyl-acyl carrier protein desaturase in Thunbergia alata endosperm. J. Biol. Chem. 269, 2751927526.
  • Cahoon, E.B., Lindqvist, Y., Schneider, G. and Shanklin, J. (1997) Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position. Proc. Natl Acad. Sci. USA, 94, 48724877.
  • Cahoon, E.B., Carlson, T.J., Ripp, K.G., Schweiger, B.J., Cook, G.A., Hall, S.E. and Kinney, A.J. (1999) Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc. Natl Acad. Sci. USA, 96, 1293512940.
  • Cahoon, E.B., Dietrich, C.R., Meyer, K., Damude, H.G., Dyer, J.M. and Kinney, A.J. (2006) Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry, 67, 11661176.
  • Cao, Y.Z., Oo, K.C. and Huang, A.H.C. (1990) Lysophosphatidate acyltransferase in the microsomes from maturing seeds of meadowfoam (Limnanthes alba). Plant Physiol. 94, 11991206.
  • Carlsson, A.S., Lindberg Yilmaz, J., Green, A.G., Stymne, S. and Hofvander, P. (2011) Replacing fossil oil with fresh oil—with what and for what? Eur. J. Lipid Sci. Technol. 113, 812831.
  • Chapman, K.D. and Ohlrogge, J.B. (2012) Compartmentation of triacylglycerol accumulation in plants. J. Biol. Chem. 287, 22882294.
  • Clemente, T.E. and Cahoon, E.B. (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol. 151, 10301040.
  • Dehesh, K. (2001) How can we genetically engineer oilseed crops to produce high levels of medium-chain fatty acids? Eur. J. Lipid Sci. Technol. 103, 688697.
  • Doan, T.T., Domergue, F., Fournier, A.E., Vishwanath, S.J., Rowland, O., Moreau, P., Wood, C.C., Carlsson, A.S., Hamberg, M. and Hofvander, P. (2012) Biochemical characterisation of a chloroplast localized fatty acid reductase from Arabidopsis thaliana. Biochim. Biophys. Acta, 1821, 12441255.
  • Dyer, J.M., Chapital, D.C., Kuan, J.C., Mullen, R.T., Turner, C., McKeon, T.A. and Pepperman, A.B. (2002) Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung: implications for the evolution of plant fatty acid diversity. Plant Physiol. 130, 20272038.
  • Dyer, J.M., Stymne, S., Green, A.G. and Carlsson, A.S. (2008) High-value oils from plants. Plant J. 54, 640655.
  • Eccleston, V.S. and Ohlrogge, J.B. (1998) Expression of lauroyl-acyl carrier protein thioesterase in Brassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and implies a set point for triacylglycerol accumulation. Plant Cell, 10, 613621.
  • van Erp, H., Bates, P.D., Burgal, J., Shockey, J. and Browse, J. (2011) Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant Physiol. 155, 683693.
  • French, C.E. (2009) Synthetic biology and biomass conversion: a match made in heaven? J. R. Soc. Interface, 6, S547S558.
  • Frentzen, M. (1993) Acyltransferases and triacylglycerols. In Lipid Metabolism in Plants (Moore, T.S., ed), pp. 195230. Boca Raton, FL, London: CRC Press.
  • Friedt, W. and Luhs, W. (1998) Recent developments and perspectives of industrial rapeseed breeding. Fett/Lipid, 100, 219226.
  • Gagne, S.J., Reed, D.W., Gray, G.R. and Covello, P.S. (2009) Structural control of chemoselectivity, stereoselectivity, and substrate specificity in membrane-bound fatty acid acetylenases and desaturases. Biochemistry, 48, 1229812304.
  • Gamo, M. and Saito, K. (1971) The distribution of diol waxes in preen glands of some birds. Comp. Biochem. Physiol. 39B, 151157.
  • Ghosal, A., Banas, A., Ståhl, U., Dahlqvist, A., Lindqvist, Y. and Stymne, S. (2007) Saccharomyces cerevisiae phospholipid:diacylglycerol acyl transferase (PDAT) devoid of its membrane anchor region is a soluble and active enzyme retaining its substrate specificities. Biochim. Biophys. Acta, 1771, 14571463.
  • Guarnieri, M.T., Nag, A., Smolinski, S.L., Darzins, A., Seibert, M. and Pienkos, P.T. (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One, 6, e25581.
  • Guy, J.E., Whittle, E., Kumaran, D., Lindqvist, Y. and Shanklin, J. (2007) The crystal structure of the ivy Δ4-16:0-ACP desaturase reveals structural details of the oxidized active site and potential determinants of regioselectivity. J. Biol. Chem. 282, 1986319871.
  • Guy, J.E., Whittle, E., Moche, M., Lengqvist, J., Lindqvist, Y. and Shanklin, J. (2011) Remote control of regioselectivity in acyl-acyl carrier protein-desaturases. Proc. Natl Acad. Sci. USA, 108, 1659416599.
  • Hajduch, M., Matusova, R., Houston, N.L. and Thelen, J.J. (2011) Comparative proteomics of seed maturation in oilseeds reveals difference in intermediary metabolism. Proteomics, 11, 16191629.
  • Heilmann, M., Iven, T., Ahmann, K., Hornung, E., Stymne, S. and Feussner, I. (2012) Production of wax esters in plant seed oils by oleosomal co-targeting of biosynthetic enzymes. J. Lipid Res. 53, 21532161.
  • Höfer, R. (2003) Oleochemical polyols: new raw materials for polyurethane applications. Coatings. Hannover, Germany: de, Vincentz Network.
  • Hoffmann, M., Hornung, E., Busch, S., Kassner, N., Ternes, P., Braus, G.H. and Feussner, I. (2007) A small membrane-peripheral region close to the active center determines regioselectivity of membrane-bound fatty acid desaturases from Aspergillus nidulans. J. Biol. Chem. 282, 2666626674.
  • Hongsthong, A., Subudhi, S., Sirijuntarat, M. and Cheevadhanarak, S. (2004) Mutation study of conserved amino acid residues of Spirulina Δ6-acyl-lipid desaturase showing involvement of Histidine 313 in the regioselectivity of the enzyme. Appl. Microbiol. Biotechnol. 66, 7484.
  • Horn, P.J. and Chapman, K.D. (2012) Lipidomics in tissues, cells and subcellular compartments. Plant J. 70, 6980.
  • Horn, P.J., Ledbetter, N.R., James, C.N., Hoffman, W.D., Case, C.R., Verbeck, G.F. and Chapman, K.D. (2011) Visualization of lipid droplet composition by direct organelle mass spectroscopy. J. Biol. Chem. 286, 32983306.
  • Horn, P.J., Korte, A.R., Neogi, P.B., Love, E., Fuchs, J., Strupat, K., Borisjuk, L., Shulaev, V., Lee, Y.J. and Chapman, K.D. (2012) Spatial mapping of lipids at cellular resolution in embryos of cotton. Plant Cell, 24, 622636.
  • Hu, Z., Ren, Z. and Lu, C. (2012) The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis. Plant Physiol. 158, 19441954.
  • Hua, W., Li, R.-J., Zhan, G.-M., Liu, J., Li, J., Wang, X.-F.Liu, G.-H. and Wang, H.-Z. (2012) Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Plant J. 69, 432444.
  • Hummel, J., Segu, S., Li, Y., Irgang, S., Jueppner, J. and Giavalisco, P. (2011) Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. Front. Plant Sci. 2, 54.
  • Jiang, H., Wu, P., Zhang, S., Song, C., Chen, Y., Li, M., Jia, Y., Fang, X., Chen, F. and Wu, G. (2012) Global analysis of gene expression profiles in developing physic nut (Jatropha curcus L.) seeds. PLoS One, 7, e36522.
  • Kalscheuer, R. and Steinbüchel, A. (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J. Biol. Chem. 278, 80758082.
  • Kim, H.U., Lee, K.R., Go, Y.S., Jung, J.H., Suh, M.C. and Kim, J.B. (2011) Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiol. 52, 983993.
  • Kroon, J.T., Wei, W., Simon, W.J. and Slabas, A.R. (2006) Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry, 67, 25412549.
  • Kumar, R., Wallis, J.G., Skidmore, C. and Browse, J. (2006) A mutation in Arabidopsis cytochrome b5 reductase identified by high-throughput screening differentially affects hydroxylation and desaturation. Plant J. 48, 920932.
  • Lardizabal, K.D., Metz, J.G., Sakamoto, T., Hutton, W.C., Pollard, M.R. and Lassner, M.W. (2000) Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic Arabidopsis. Plant Physiol. 122, 645655.
  • Larson, T.R., Edgell, T., Byrne, J., Dehesh, K. and Graham, I.A. (2002) Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds. Plant J. 32, 519527.
  • Le Quéré, C., Raupach, M.R., Canadell, J.G., Marland, G., Bopp, L., Ciais, P., Conway, T.J., Doney, S.C., Feely, R.A., Foster, P., Friedlingstein, P., Gurney, K., Houghton, R.A., House, J.I., Huntingford, C., Levy, P.E., Lomas, M.R., Majkut, J., Metzl, N., Ometto, J.P., Peters, G.P., Prentice, I.C., Randerson, J.T., Running, S.W., Sarmiento, J.L., Schuster, U., Sitch, S., Takahashi, T., Viovy, N., van der Werf, G.R. and Woodward, F.I. (2009) Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2, 831836.
  • Lee, M., Lenman, M., Banas, A., Bafor, M., Singh, S., Schweizer, M., Nilsson, R., Liljenberg, C., Dahlqvist, A., Gummeson, P.-O., Sjodahl, S., Green, A. and Stymne, S. (1998) Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science, 280, 915918.
  • Lee, J., Welti, R., Schapaugh, W.T. and Trick, H.N. (2011) Phospholipid and triacylglycerol profiles modified by PLD suppression in soybean seed. Plant Biotechnol. J. 9, 359372.
  • Li, F., Wu, X., Lam, P., Bird, D., Zheng, H., Samuels, L., Reinhard Jetter, R. and Kunst, L. (2008) Identification of the wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol. 148, 97107.
  • Li, W., Kong, X.H., Ruan, M., Ma, F.M., Jiang, Y.F., Liu, M.Z., Chen, Y. and Zuo, X.H. (2010a) Green waxes, adhesives and lubricants. Philos. Transact. A Math. Phys. Eng. Sci. 368, 48694890.
  • Li, R., Yu, K. and Hildebrand, D.F. (2010b) DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids, 45, 145157.
  • Li, R., Yu, K., Hatanaka, T. and Hildebrand, D.F. (2010c) Vernonia DGATs increase accumulation of epoxy fatty acids in oil. Plant Biotechnol. J. 8, 184195.
  • Li, R., Yu, K., Wu, Y., Tateno, M., Hatanaka, T. and Hildebrand, D.F. (2012a) Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds. Metab. Eng. 14, 2938.
  • Li, X., van Loo, E.N., Gruber, J., Fan, J., Guan, R., Frentzen, M., Stymne, S. and Zhu, L.-H. (2012b) Development of high-erucic acid oil in the industrial oil crop Crambe abyssinica. Plant Biotechnol. J. 20, 862870.
  • Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M., Arondel, V., Bates, P., Baud, S., Bird, D., DeBono, A., Durrett, T., Franke, R., Graham, I., Katayama, K., Kelly, A., Larson, T., Markham, J., Miquel, M., Molina, I., Nishida, I., Rowland, O., Samuels, L., Schmid, K., Wada, H., Welti, R., Xu, C., Zallot, R. and Ohlrogge, J. (2010) Acyl-lipid metabolism. Arabidopsis Book, 8, e0133.
  • Lindqvist, Y., Huang, W., Schneider, G. and Shanklin, J. (1996) Crystal structure of Δ9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. EMBO J. 15, 40814092.
  • Lippold, F., vom Dorp, K., Abraham, M., Hölzl, G., Wewer, V., Yilmaz, J.L., Lager, I., Montandon, C., Besagni, C., Kessler, F., Stymne, S. and Dörmann, P. (2012) Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis. Plant Cell, 24, 20012014.
  • van der Loo, F.J., Broun, P., Turner, S. and Somerville, C. (1995) An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc. Natl Acad. Sci. USA, 92, 67436747.
  • Lu, C.F., Xin, Z.G., Ren, Z.H., Miquel, M. and Browse, J. (2009) An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc. Natl Acad. Sci. USA, 106, 1883718842.
  • Lu, C., Napier, J.A., Clemente, T.E. and Cahoon, E.B. (2011) New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr. Opin. Biotechnol. 22, 252259.
  • Meesapyodsuk, D., Reed, D.W., Covello, P.S. and Qiu, X. (2007) Primary structure, regioselectivity, and evolution of the membrane-bound fatty acid desaturase of Claviceps purpurea. J. Biol. Chem. 282, 2019120199.
  • Meier, M.A.R. (2009) Metathesis with oleochemicals: new approaches for the utilization of plant oils as renewable resources in polymer science. Macromol. Chem. Phys. 210, 10731079.
  • Merchant, S.S., Kropat, J., Liu, B., Shaw, J. and Warakanont, J. (2012) TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr. Opin. Biotechnol. 23, 352363.
  • Metz, J.G., Pollard, M.R., Anderson, L., Hayes, T.R. and Lassner, M.W. (2000) Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed. Plant Physiol. 122, 635644.
  • Miller, R., Wu, G., Deshpande, R.R., Vieler, A., Gartner, K., Li, X., Moellering, E.R., Zauner, S., Cornish, A.J., Liu, B., Bullard, B., Sears, B.B., Kuo, M.-H., Hegg, E.L., Shachar-Hill, Y., Shui, S.-H. and Benning, C. (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol. 154, 17371752.
  • Myer, K., Stecca, K.L., Ewell-Hicks, K., Allen, S.A. and Everard, J.D. (2012) Oil and protein accumulation in developing seeds is influenced by the expression of a cytosolic pyrophosphatase in Arabidopsis. Plant Physiol. 159, 12211234.
  • Nam, J.W. and Kappock, T.J. (2007) Cloning and transcriptional analysis of Crepis alpina fatty acid desaturases affecting the biosynthesis of crepenynic acid. J. Exp. Bot. 58, 14211432.
  • Napier, J.A. (2007) The production of unusual fatty acids in transgenic plants. Annu. Rev. Plant Biol. 58, 295319.
  • Napier, J.A. and Graham, I.A. (2010) Tailoring plant lipid composition: designer oilseeds come of age. Curr. Opin. Plant Biol. 13, 330337.
  • Nath, N.K., Wilmer, J.A., Wallington, E.J., Becker, H.C. and Möllers, C. (2009) Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-Fae1 transgenes in rapeseed (Brassica napus L.). Theor. Appl. Genet. 118, 765773.
  • Nguyen, H.T., Mishra, G., Whittle, E., Pidkowich, M.S., Bevan, S.A., Merlo, A.O., Walsh, T.A. and Shanklin, J. (2010) Metabolic engineering of seeds can achieve levels of ω-7 fatty acids comparable with the highest levels found in natural plant sources. Plant Physiol. 154, 18971904.
  • Nykiforuk, C.L., Shewmaker, C., Harry, I., Yurchenko, O.P., Zhang, M., Reed, C., Oinam, G.S., Zaplachinski, S., Fidantsef, A., Boothe, J.G. and Moloney, M.M. (2012) High level accumulation of gamma linolenic acid (C18:3Δ6, 9,12 cis) in transgenic safflower (Carthamus tinctorius) seeds. Transgenic Res. 21, 367381.
  • Ohlrogge, J. and Chapman, K. (2011) The seeds of green energy—expanding the contribution of plant oils as biofuels. The Biochemist, 33, 3438.
  • Oil World Annual (2012). ISTA Mielke GmbH. Hamburg, Germany: Oil World Annual.
  • Petrie, J.R., Shrestha, P., Liu, Q., Mansour, M.P., Wood, C.C., Zhou, X.R., Nichols, P.D., Green, A.G. and Singh, S.P. (2010) Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production. Plant Methods, 6, 813.
  • Petrie, J.R., Vanhercke, T., Shrestha, P., El-Tahchy, A., White, A., Zhou, X.R., Liu, Q., Mansour, M.P., Nichols, P.D. and Singh, S.P. (2012a) Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway. PLoS One, 7, e35214.
  • Petrie, J.R., Shrestha, P., Zhou, X-R., Mansour, M.P., Liu, Q., Belide, S., Nichols, P.D. and Singh, S. (2012b) Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS One, 7, e49165.
  • Poirier, Y., Ventre, G. and Caldelari, D. (1999) Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiol. 121, 13591366.
  • Qiu, X., Reed, D.W., Hong, H., Mackenzie, S.L. and Covello, P.S. (2001) Identification and analysis of a gene from Calendula officinalis encoding a fatty acid conjugase. Plant Physiol. 125, 847855.
  • Rawat, R., Yu, X.-H., Sweet, M. and Shanklin, J. (2012) Conjugated fatty acid synthesis. Residues 111 and 115 influence product partitioning of Momordica charantia conjugase. J. Biol. Chem. 287, 1623016237.
  • Rowland, O. and Domergue, F. (2012) Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications. Plant Sci. 193–194, 2838.
  • Ruiz-López, N., Sayanova, O., Napier, J.A. and Haslam, R.P. (2012) Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. J. Exp. Bot. 63, 23972410.
  • Rybak, A., Fokou, P.A. and Meier, M.A.R. (2008) Metathesis as a versatile tool in oleochemistry. Eur. J. Lipid Sci. Technol. 110, 797804.
  • Sandager, L., Gustavsson, M.H., Ståhl, U., Dahlqvist, A., Wiberg, E., Banas, A., Lenman, M., Ronne, H. and Stymne, S. (2002) Storage lipid synthesis is non-essential in yeast. J. Biol. Chem. 277, 64786482.
  • Sanjaya, Durrett, T.P., Weise, S.E. and Benning, C. (2011) Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotechnol. J. 9, 874883.
  • Santos Mendoza, M., Dubreucq, B., Miquel, M., Caboche, M. and Lepiniec, L. (2005) LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett. 576, 46664670.
  • Shi, L., Katavic, V., Yu, Y., Kunst, L. and Haughn, G. (2012) Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil. Plant J. 69, 3746.
  • Shockey, J.M., Gidda, S.K., Chapital, D.C., Kuan, J.C., Dhanoa, P.K., Bland, J.M., Rothstein, S.J., Mullen, R.T. and Dyer, J.M. (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell, 18, 22942313.
  • Siloto, R.M.P., Truksa, M., Brownfield, D., Good, A.G. and Weselake, R.J. (2009a) Directed evolution of acyl-CoA:diacylglycerol acyltransferase: development and characterization of Brassica napus DGAT1 mutagenized libraries. Plant Physiol. Biochem. 47, 456461.
  • Siloto, R.M.P., Truksa, M., He, X., McKeon, T. and Weselake, R.J. (2009b) Simple methods to detect triacylglycerol biosynthesis in a yeast-based recombinant system. Lipids, 44, 963973.
  • Skoric, D., Jocic, S., Sakac, Z. and Lecic, N. (2008) Genetic possibilities for altering sunflower oil quality to obtain novel oils. Can. J. Physiol. Pharmacol., 86, 215221.
  • Snyder, C., Yurchenko, O.P., Siloto, R.M.P., Chen, X., Liu, Q., Mietkiewska, E. and Weselake, R.J. (2009) Acyltransferase action in the modification of seed oil biosynthesis. N. Biotechnol. 26, 1116.
  • Sperling, P., Lee, M., Girke, T., Zahringer, U., Stymne, S. and Heinz, E. (2000) A bifunctional delta-fatty acyl acetylenase/desaturase from the moss Ceratodon purpureus. A new member of the cytochrome b5 superfamily. Eur. J. Biochem. 267, 38013811.
  • Spitzer, V., Aitzetmüller, K. and Vosmann, K. (1996) The seed oil of Bernardia pulchella (Euphorbiaceae)—a rich source of vernolic acid. J. Am. Oil Chem. Soc. 73, 17331735.
  • Ståhl, U., Carlsson, A.S., Lenman, M., Dahlqvist, A., Huang, B.Q., Banas, W., Banas, A. and Stymne, S. (2004) Cloning and functional characterization of a Phospholipid: Diacylglycerol acyltransferase from Arabidopsis. Plant Physiol. 135, 13241335.
  • Stålberg, K., Ståhl, U., Stymne, S. and Ohlrogge, J. (2009) Characterization of two Arabidopsis thaliana acyltransferases with preference for lysophosphatidylethanolamine. BMC Plant Biol. 9, 60.
  • Stobart, K., Mancha, M., Lenman, M., Dahlqvist, A. and Stymne, S. (1997) Triacylglycerols are synthesised and utilized by transacylation reactions in microsomal preparations of developing safflower (Carthamus tinctorius L.) seeds. Planta, 203, 5866.
  • Stone, S.L., Kwong, L.W., Yee, K.M., Pelletier, J., Lepiniec, L., Fischer, R.L., Goldberg, R.B. and Harada, J.J. (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc. Natl Acad. Sci. USA, 98, 1180611811.
  • Stymne, S., Tonnet, M.L. and Green, A.G. (1992) Biosynthesis of linolenate in developing embryos and cell-free preparations of high-linolenate linseed (Linum usitatissimum) and low-linolenate mutants. Arch. Biochem. Biophys. 294, 557563.
  • Suh, M.C., Schultz, D.J. and Ohlrogge, J.B. (2002) What limits production of unusual monoenoic fatty acids in transgenic plants? Planta, 215, 584595.
  • Tan, H., Yang, X., Zhang, F., Zheng, X., Qu, C., Mu, J., Fu, F., Li, J., Guan, R., Zhang, H., Wang, G. and Zuo, J. (2011) Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol. 156, 15771588.
  • Taylor, D.C., Smith, M.A., Fobert, P., Mietkiewaska, E. and Weselake, R.J. (2011) Metabolic engineering of higher plants to produce bio-industrial oils. In Comprehensive Biotechnology, 2nd edn, Vol. 4 (Moo-Young, M., ed), pp. 6785. The Netherlands: Elsevier B.V.
  • Thomaeus, S., Carlsson, A.S. and Stymne, S. (2001) Distribution of fatty acids in polar and neutral lipids during seed development in Arabidopsis thaliana genetically engineered to produce acetylenic, epoxy and hydroxy fatty acids. Plant Sci. 161, 9971003.
  • Troncoso-Ponce, M.A., Kilaru, A., Cao, X., Durrett, T.P., Fan, J., Jensen, J.K., Thrower, N.A., Pauly, M., Wilkerson, C. and Ohlrogge, J.B. (2011) Comparative deep transcriptional profiling of four developing oilseeds. Plant J. 68, 10141027.
  • Vanhercke, T., Shrestha, P., Green, A.G. and Singh, S.P. (2011) Mechanistic and structural insights into the regioselectivity of an acyl-CoA fatty acid desaturase via directed molecular evolution. J. Biol. Chem. 286, 1286012869.
  • Vigeolas, H., Huhn, D. and Geigenberger, P. (2011) Nonsymbiotic hemoglobin-2 leads to an elevated energy state and to a combined increase in polyunsaturated fatty acids and total oil content when overexpressed in developing seeds of transgenic Arabidopsis plants. Plant Physiol. 155, 14351444.
  • Voelker, T.A., Worrell, A.C., Anderson, L., Bleibaum, J., Fan, C., Hawkins, D.J., Radke, S.E. and Davies, H.M. (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science, 257, 7274.
  • Voelker, T.A., Jones, A., Cranmer, A.M., Davies, H.M. and Knutzon, D.S. (1997) Broad-range and binary-range acyl-acyl-carrier-protein thioesterases suggest an alternative mechanism for medium-chain production in seeds. Plant Physiol. 114, 669677.
  • Wallis, J.W. and Browse, J. (2010) Lipid biochemists salute the genome. Plant J. 61, 10921106.
  • Wang, Z., Hobson, N., Galindo, L., Zhu, S., Shi, D., McDill, J., Yang, L., Hawkins, S., Neutelings, G., Datla, R., Lambert, G., Galbraith, D.W., Grassa, C.J., Geraldes, A., Cronk, Q.C., Cullis, C., Dash, P.K., Kumar, P.A., Cloutier, S., Sharpe, A.G., Wong, G.K., Wang, J. and Deyholos, M.K. (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 72, 461473.
  • Weselake, R.J., Taylor, D.C., Rahman, M.H., Shah, S., Laroche, A., McVetty, P.B.E. and Harwood, J.L. (2009) Increasing the flow of carbon into seed oil. Biotechnol. Adv. 27, 866878.
  • Whittle, E. and Shanklin, J. (2001) Engineering Δ9-16:0-acyl carrier protein (ACP) desaturase specificity based on combinatorial saturation mutagenesis and logical redesign of the castor Δ9-18:0-ACP desaturase. J. Biol. Chem. 276, 2150021505.
  • Whittle, E.J., Tremblay, A.E., Buist, P.H. and Shanklin, J. (2008) Revealing the catalytic potential of an acyl-ACP desaturase: tandem selective oxidation of saturated fatty acids. Proc. Natl Acad. Sci. USA, 105, 1473814743.
  • Wiberg, E., Tillberg, E. and Stymne, S. (1994) Substrates of diacylglycerol acyltransferase in microsomes from developing oil seeds. Phytochemistry, 36, 573577.
  • Wiberg, E., Edwards, P., Byrne, J., Stymne, S. and Dehesh, K. (2000) The distribution of caprylate, caprate and laurate in lipids from developing and mature seeds of transgenic Brassica napus L. Planta, 212, 3340.
  • Wood, C.C., Petrie, J.R., Shrestha, P., Mansour, M.P., Nichols, P.D., Green, A.G. and Singh, S.P. (2009) A leaf-based assay using interchangeable design principles to rapidly assemble multistep recombinant pathways. Plant Biotechnol. J. 7, 111.
  • Xu, J., Francis, T., Mietkiewska, E., Giblin, E.M., Barton, D.L., Zhang, Y., Zhang, M. and Taylor, D.C. (2008) Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnol. J. 6, 799818.
  • Xu, J., Carlsson, A.S., Francis, T., Zhang, M., Hoffman, T., Giblin, M.E. and Taylor, D.C. (2012) Triacylglycerol synthesis by PDAT1 in the absence of DGAT1 activity is dependent on re-acylation of LPC by LPCAT2. BMC Plant Biol. 12, 4.
  • Yang, P., Li, X., Shipp, M.J., Shockey, J.M. and Cahoon, E.B. (2010a) Mining the bitter melon (Momordica charantia L.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes. BMC Plant Biol. 10, 250269.
  • Yang, W., Pollard, M., Li-Beisson, Y., Beisson, F., Feig, M. and Ohlrogge, J. (2010b) A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proc. Natl Acad. Sci. USA, 107, 1204012045.
  • Yen, C.L., Monetti, M., Burri, B.J. and Farese, R.V. (2005) The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters. J. Lipid Res. 46, 15021511.
  • Yu, K., McCracken, C.T., Li, R. and Hildebrand, D.F. (2006) Diacylglycerol acyltransferases from Vernonia and Stokesia prefer substrates with vernolic acid. Lipids, 41, 557566.
  • Yu, X.-H., Rawat, R. and Shanklin, J. (2011) Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis. BMC Plant Biol. 11, 97.
  • Zhang, M., Fan, J., Taylor, D.C. and Ohlrogge, J.B. (2009) DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell, 21, 38853901.
  • Zheng, Q., Li, J.Q., Kazachkov, M., Liu, K. and Zou, J. (2012) Identification of Brassica napus lysophosphatidylcholine acyltransferase genes through yeast functional screening. Phytochemistry, 75, 2131.