SEARCH

SEARCH BY CITATION

References

  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248254.
  • Bringmann, M., Li, E., Sampathkumar, A., Kocabek, T., Hauser, M.T. and Persson, S. (2012) POM-POM2/cellulose synthase interacting1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell, 24, 163177.
  • Brown, R.M., Saxena, I.M. and Kudlicka, K. (1996) Cellulose biosynthesis in higher plants. Trends Plant Sci. 1, 149155.
  • Burn, J.E., Hurley, U.A., Birch, R.J., Arioli, T., Cork, A. and Williamson, R.E. (2002) The cellulose-deficient Arabidopsis mutant rsw3 is defective in a gene encoding a putative glucosidase II, an enzyme processing N-glycans during ER quality control. Plant J. 32, 949960.
  • Cano-Delgado, A., Penfield, S., Smith, C., Catley, M. and Bevan, M. (2003) Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 34, 351362.
  • Carroll, A., Mansoori, N., Li, S., Lei, L., Vernhettes, S., Visser, R.G.F., Somerville, C., Gu, Y. and Trindade, L.M. (2012) Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis thaliana plants. Plant Physiol. 160, 726737.
  • Chatterjee, A., Das, N.C., Raha, S., Babbit, R., Huang, Q., Zaitlin, D. and Maiti, I.B. (2010) Production of xylanase in transgenic tobacco for industrial use in bioenergy and biofuel applications. In Vitro Cell. Dev. Biol. Plant, 46, 198209.
  • Crowell, E.F., Bischoff, V., Desprez, T., Rolland, A., Stierhof, Y.D., Schumacher, K., Gonneau, M., Hofte, H. and Vernhettes, S. (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell, 21, 11411154.
  • DeBolt, S., Gutierrez, R., Ehrhardt, D.W. and Somerville, C. (2007) Nonmotile cellulose synthase subunits repeatedly accumulate within localized regions at the plasma membrane in Arabidopsis hypocotyl cells following 2,6-dichlorobenzonitrile treatment. Plant Physiol. 145, 334338.
  • Desprez, T., Vernhettes, S., Fagard, M., Refregier, G., Desnos, T., Aletti, E., Py, N., Pelletier, S. and Hofte, H. (2002) Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutation in same cellulose synthase isoforms CESA6. Plant Physiol. 128, 482490.
  • Desprez, T., Juraniec, M., Crowell, E.F., Jouy, H., Pochylova, Z., Parcy, F., Hofte, H., Gonneau, M. and Vernhettes, S. (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 104, 1557215577.
  • Dey, N. and Maiti, I.B. (1999a) Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol. Biol. 40, 771782.
  • Dey, N. and Maiti, I.B. (1999b) Further characterization and expression analysis of Mirabilis mosaic virus (MMV) full-length transcript promoter with single and double enhancer domains in transgenic plants. Transgenics, 3, 6170.
  • Droogenbroeck, B.V., Cao, J., Stadlmann, J., Altmann, F., Colanesi, S., Hillmer, S., Robinson, D.G., Lerberge, E.V., Terryn, N., Montagu, M.V., Liang, M., Depicker, A. and Jaeger, G.D. (2007) Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proc. Natl Acad. Sci. USA, 104, 14301435.
  • Durso, N.A. and Vaughn, K.C. (1997) The herbicidal manipulation of callose levels in cell plates radically affects cell plate structure (abstract no. 351). Plant Physiol. 114, S-87.
  • Eudes, A., George, A., Mukerjee, P., Kim, J.S., Pollet, B., Benke, P.I., Yang, F., Mitra, P., Sun, L., Cetinkol, Ö.P., Chabout, S., Mouille, G., Soubigou-Taconnat, L., Balzergue, S., Singh, S., Holmes, B.M., Mukhopadhyay, A., Keasling, J.D., Simmons, B.A., Lapierre, C., Ralph, J. and Loqué, D. (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol. J. 10, 609620.
  • Gillmor, C.S., Poindexter, P., Lorieau, J., Palcic, M.M. and Somerville, C. (2002) α-Glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis. J. Cell Biol. 156, 10031013.
  • Gutierrez, R., Lindeboom, J.J., Paredez, A.R., Emons, A.M. and Ehrhardt, D.W. (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol. 11, 797806.
  • Harris, D., Stork, J. and DeBolt, S. (2009) Genetic modification in cellulose-synthase reduces crystallinity and improves biochemical conversion to fermentable sugar. GCB Bioenergy, 1, 5161.
  • Harris, D., Bulone, V., Ding, S.Y. and DeBolt, S. (2010) Tools for cellulose analysis in plant cell walls. Plant Physiol. 153, 420426.
  • Harris, D.M., Corbin, K., Wang, T., Gutierrez, R., Bertolo, A.L., Petti, C., Smilgies, D.-M., Estevez, J.M., Bonetta, D., Urbanowicz, B.R., Ehrhardt, D., Somerville, C.R., Rose, J.K.C., Hong, M. and DeBolt, S. (2012) Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase. Proc. Natl Acad. Sci. 109, 40984103.
  • Heim, D.R., Roberts, J.L., Pike, P.D. and Larrinua, I.M. (1989) Mutation of a locus of Arabidopsis thaliana confers resistance to the herbicide isoxaben. Plant Physiol. 90, 146150.
  • Heim, D.R., Roberts, J.L., Pike, P.D. and Larrinua, I.M. (1990) A second locus, Ixr B1 in Arabidopsis thaliana, that confers resistance to the herbicide isoxaben. Plant Physiol. 92, 858861.
  • Heim, D.R., Skomp, J.R., Waldron, C. and Larrinua, I.M. (1991) Differential response to isoxaben of cellulose biosynthesis by wild-type and resistant strains of Arabidopsis thaliana. Pestic. Biochem. Physiol. 39, 9399.
  • Hermans, C., Porco, S., Verbruggen, N. and Bush, D.R. (2010) Chitinase-like protein CTL1 plays a role in altering root system architecture in response to multiple environmental conditions. Plant Physiol. 152, 904917.
  • Hofgen, R. and Willmitzer, L. (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 16, 9877.
  • Hu, W.J., Harding, S.A., Lung, J., Popko, J.L., Ralph, J., Stokke, D.D., Tsai, C.J. and Chiang, V.L. (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotechnol. 17, 808812.
  • Joshi, C.P., Thammannagowda, S., Fujino, T., Gou, J.Q., Avci, U., Haigler, C.H., McDonnell, L.M., Mansfield, S.D., Mengesha, B., Carpita, N.C., Harris, D., DeBolt, S. and Peter, G.F. (2011) Perturbation of wood cellulose synthesis causes pleiotropic effects in transgenic aspen. Mol. Plant, 4, 331345.
  • Kimura, S., Laosinchai, W., Itoh, T., Cui, X., Linder, R. and Brown, R. (1999) Immunogold labeling of rosette terminal cellulose-synthase complexes in the vascular plant Vigna angularis. Plant Cell, 11, 20752085.
  • Kotake, T., Aohara, T., Hirano, K., Sato, A., Kaneko, Y., Tsumuraya, Y., Takatsuji, H. and Kawasaki, S. (2011) Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. J. Exp. Bot. 62, 20532062.
  • Krebbers, E., Herdies, L., De Clercq, A., Seurinck, J., Leemans, J., Van Damme, J., Segura, M., Gheysen, G., Van Montagu, M. and Vandekerckhove, J. (1988) Determination of the processing sites of an Arabidopsis 2S albumin and characterization of the complete gene family. Plant Physiol. 87, 859866.
  • Kumar, D., Patro, S., Ranjan, R., Sahoo, D., Maiti, I.B. and Dey, N. (2011) Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy. PLoS One, 6, e24627.
  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 608685.
  • Lefebvre, A., Maizonier, D., Gaudry, J.C., Clair, D. and Scalla, R. (1987) Some effects of the herbicide EL-107 on cellular growth and metabolism. Weed Res. 27, 125134.
  • Li, S., Lei, L., Somerville, C.R. and Gu, Y. (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc. Natl Acad. Sci. USA, 109, 185190.
  • Loos, A., Van Droogenbroeck, B., Hillmer, S., Grass, J., Pabst, M., Castilho, A., Kunert, R., Liang, M., Arcalis, E., Robinson, D.G., Depicker, A. and Steinkellner, H. (2011) Expression of antibody fragments with a controlled N-glycosylation pattern and induction of endoplasmic reticulum-derived vesicles in seeds of Arabidopsis. Plant Physiol. 155, 20362048.
  • Maiti, I.B., Murphy, J.F., Shaw, J.G. and Hunt, A.G. (1993) Plant that express a potyvirus proteinase gene are resistance to virus infection. Proc. Natl Acad. Sci. USA, 90, 61106114.
  • Mitsuda, N., Iwase, A., Yamamoto, H., Yoshida, M., Seki, M., Shinozaki, K. and Ohme-Takagi, M. (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell, 19, 270280.
  • Montezinos, D. and Delmer, D.P. (1980) Characterization of inhibitors of cellulose synthesis in cotton fibers. Planta, 148, 305311.
  • Paredez, A.R., Somerville, C.R. and Ehrhardt, D.W. (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science, 312, 14911495.
  • Paredez, A.R., Persson, S., Ehrhardt, D.W. and Somerville, C.R. (2008) Genetic evidence that cellulose synthase activity influences microtubule cortical array organization. Plant Physiol. 147, 17231734.
  • Peng, L., Xiang, F., Roberts, E., Kawagoe, Y., Greve, L.C., Kreuz, K. and Delmer, D.P. (2001) The experimental herbicide CGA 325′615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline β-1,4-glucan associated with CesA protein. Plant Physiol. 126, 981992.
  • Persson, S., Paredez, A., Carrol, A., Palsdottir, H., Doblin, M., Poindexter, P., Khitrov, N., Auer, M. and Somerville, C.R. (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complex in Arabidopsis. Proc. Natl Acad. Sci. USA, 104, 1556615571.
  • Rogers, L.A., Dubos, C., Surman, C., Willment, J., Cullis, I.F., Mansfield, S.D. and Campbell, M.M. (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytol. 168, 123140.
  • Ross, P., Mayer, R. and Benziman, M. (1991) Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55, 3558.
  • Sahoo, D.K., Ranjan, R., Kumar, D., Kumar, A., Sahoo, B.S., Raha, S., Maiti, I.B. and Dey, N. (2009) An alternative method of promoter assessment by confocal laser scanning microscopy. J. Virol. Methods, 161, 114121.
  • Scheible, W.R., Eshed, R., Richmond, T., Delmer, D. and Somerville, C. (2001) Modification of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc. Natl Acad. Sci. USA, 98, 1007910084.
  • Stork, J., Montross, M., Smith, R., Schwer, L., Chen, W., Reynolds, M., Phillips, T., Coolong, T. and DeBolt, S. (2009) Regional examination shows potential for native feedstock options for cellulosic biofuel production. GCB Bioenergy, 1, 230239.
  • Taylor, N.G., Howells, R.M., Huttly, A.K., Vickers, K. and Turner, S.R. (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl Acad. Sci. USA, 100, 14501455.
  • Tsang, D.L., Edmond, C., Harrington, J.L. and Nuhse, T.S. (2011) Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. Plant Physiol. 156, 596604.
  • Wang, J., Elliott, J.E. and Williamson, R.E. (2008) Feature of primary wall CESA complex in wild type and cellulose-deficient mutants of Arabidopsis thaliana. J. Exp. Bot. 59, 26272637.
  • Zhong, R., Morrison III, W.H., Freshour, G.D., Hahn, M.G. and Ye, Z.-H. (2003) Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis. Plant Physiol. 132, 786795.