SEARCH

SEARCH BY CITATION

References

  • Ampomah-Dwamena, C., Morris, B.A., Sutherland, P., Veit, B. and Yao, J.-L. (2002) Down-regulation of TM29, a tomato SEPALLATA Homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol., 130, 605617.
  • Arias, R., Lee, T.-C., Logendra, L. and Janes, H. (2000) Correlation of Lycopene Measured by HPLC with the L*, a*, b* Color Readings of a Hydroponic Tomato and the Relationship of Maturity with Color and Lycopene Content. J. Agric. Food. Chem., 48, 16971702.
  • Atanassova, B. (2000) Functional male sterility in tomato (Lycopersicon esculentum Mill.) and its application in hybrid seed production. Acta Physiologiae Plantarum, 22, 221225.
  • Bishop, C.J. (1954) A stamenless male-sterile tomato. Am. J. Bot., 41, 540542.
  • Botella-Pavía, P. and Rodríguez-Concepción, M. (2006) Carotenoid biotechnology in plants for nutritionally improved foods. Physiol. Plant., 126, 369381.
  • De Block, M.D., Debrouwer, D. and Moens, T. (1997) The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor. Appl. Genet., 95, 125131.
  • DellaPenna, D. and Pogson, B.J. (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol., 57, 711738.
  • Ellul, P.E., Garcia-Sogo, B.G.-S., Pineda, B.P., Ríos, G.R., Roig, L.R. and Moreno, V.M. (2003) The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theor. Appl. Genet., 106, 231238.
  • Enfissi, E.M.A., Barneche, F., Ahmed, I., Lichtlé, C., Gerrish, C., McQuinn, R.P., Giovannoni, J.J., Lopez-Juez, E., Bowler, C., Bramley, P.M. and Fraser, P.D. (2010) Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato fruit. Plant Cell, 22, 11901215.
  • Fos, M., Nuez, F. and García-Martínez, J.L. (2000) The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol., 122, 471480.
  • Fos, M., Proaño, K., Nuez, F. and García-Martínez, J.L. (2001) Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol. Plant., 111, 545550.
  • Fraser, P.D., Enfissi, E.M.A. and Bramley, P.M. (2009) Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Arch. Biochem. Biophys., 483, 196204.
  • García-Sogo, B., Pineda, B., Castelblanque, L., Antón, T., Medina, M., Roque, E., Torresi, C., Beltrán, J., Moreno, V. and Cañas, L. (2010) Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation. Plant Cell Rep., 29, 6177.
  • George, W.L., Scott, J.W. and Splittstoesser, W.E. (1984) Parthenocapy in tomato. Hort. Rev., 6, 6584.
  • Gómez, P., Jamilena, M., Capel, J., Zurita, S., Angosto, T. and Lozano, R. (1999) Stamenless, a tomato mutant with homeotic conversions in petals and stamens. Planta, 209, 172179.
  • Gómez, M.D., Beltrán, J.-P. and Cañas, L.A. (2004) The pea END1 promoter drives anther-specific gene expression in different plant species. Planta, 219, 967981.
  • Hartley, R.W. (1988) Barnase and barstar expression of its cloned inhibitor permits expression of a cloned ribonuclease. J. Mol. Biol., 202, 913915.
  • Hedden, P. and Graebe, J. (1985) Inhibition of gibberellin biosynthesis by paclobutrazol in cell-free homogenates of Cucurbita maxima endosperm and Malus pumila embryos. J. Plant Growth Regul., 4, 111122.
  • Ho, L.C. and Hewitt, J.D. (1986) Fruit development. In The Tomato Crop: a Scientific Basis for Improvement (Atherton, J.G. and Rudich, J., eds), pp. 201240. Cambridge: Cambridge University Press.
  • van Huizen, R., Ozga, J.A. and Reinecke, D.M. (1997) Seed and hormonal regulation of gibberellin 20-oxidase expression in pea pericarp. Plant Physiol., 115, 123128.
  • Ingrosso, I., Bonsegna, S., Dedomenico, S., Laddomada, B., Blando, F., Santino, A. and Giovinazzo, G. (2011) Over-expression of a grape stilbene synthase gene in tomato induces parthenocarpy and causes abnormal pollen development. Plant Physiol. Biochem., 49, 10921099.
  • de Jong, M., Mariani, C. and Vriezen, W.H. (2009) The role of auxin and gibberellin in tomato fruit set. J. Exp. Bot., 60, 15231532.
  • Lemaire-Chamley, M., Petit, J., Garcia, V., Just, D., Baldet, P., Germain, V., Fagard, M., Mouassite, M., Cheniclet, C. and Rothan, C. (2005) Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol., 139, 750769.
  • Mapelli, S., Frova, C., Torti, G. and Soressi, G.P. (1978) Relationship between set, development and activities of growth regulators in tomato fruits. Plant Cell Physiol., 19, 12811288.
  • Mariani, C., Beuckeleer, M.D., Truettner, J., Leemans, J. and Goldberg, R.B. (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 347, 737741.
  • Marti, C., Orzaez, D., Ellul, P., Moreno, V., Carbonell, J. and Granell, A. (2007) Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J., 52, 865876.
  • Mattoo, A.K., Murata, T., Pantastico, Er.B., Chachin, K., Ogata, K. and Phan, C.T. (1975) Chemical changes during ripening and senescence. In Postharvest Physiology, Handling and Utilization of Tropical and Subtropical Fruits and Vegetables (Pantastico, E., ed.) pp. 104127. Westport, CT: AVI Publishing.
  • Mazzucato, A., Taddei, A.R. and Soressi, G.P. (1998) The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development. Development, 125, 107114.
  • Olimpieri, I., Siligato, F., Caccia, R., Mariotti, L., Ceccarelli, N., Soressi, G.P. and Mazzucato, A. (2007) Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta, 226, 877888.
  • Philouze, J. and Maisonneuve, B. (1978) Heredity of the natural ability to set parthenocarpic fruits in the Soviet variety Severianin. Tomato Genet. Coop., 28, 1213.
  • Rebers, M., Kaneta, T., Kawaide, H., Yamaguchi, S., Yang, Y.-Y., Imai, R., Sekimoto, H. and Kamiya, Y. (1999) Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. Plant J., 17, 241250.
  • Roberts, M.R., Boyes, E. and Scott, R.J. (1995) An investigation of the role of the anther tapetum during microspore development using genetic cell ablation. Sex. Plant Reprod., 8, 299307.
  • Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N. and Willmitzer, L. (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J., 23, 131142.
  • Römer, S., Fraser, P.D., Kiano, J.W., Shipton, C.A., Misawa, N., Schuch, W. and Bramley, P.M. (2000) Elevation of the provitamin a content of transgenic tomato plants. Nat. Biotechnol., 18, 666669.
  • Roque, E., Gómez, M., Ellul, P., Wallbraun, M., Madueño, F., Beltrán, J.-P. and Cañas, L. (2007) The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation. Plant Cell Rep., 26, 313325.
  • Rotino, G.L., Perri, E., Zottini, M., Sommer, H. and Spena, A. (1997) Genetic engineering of parthenocarpic plants. Nat. Biotechnol., 15, 13981401.
  • Rotino, G.L., Acciarri, N., Sabatini, E., Mennella, G., Lo Scalzo, R., Maestrelli, A., Molesini, B., Pandolfini, T., Scalzo, J., Mezzetti, B. and Spena, A. (2005) Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality. BMC Biotechnol., 5, 32.
  • Serrani, J., Fos, M., Atarés, A. and García-Martínez, J. (2007) Effect of Gibberellin and Auxin on Parthenocarpic Fruit Growth Induction in the cv Micro-Tom of Tomato. J. Plant Growth Regul., 26, 211221.
  • Serrani, J.C., Ruiz-Rivero, O., Fos, M. and García-Martínez, J.L. (2008) Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J., 56, 922934.
  • Shewfelt, R.L., Thai, C.N. and Davis, J.W. (1988) Prediction of changes in color of tomatoes during ripening at different constant temperatures. J. Food Sci., 53, 14331437.
  • Tandon, K.S., Abegaz, E., Shewfelt, R.L., Baldwin, E.A. and Scott, J.W. (2000) Interrelationship of sensory descriptors and chemical composition as affected by harvest maturity and season on fresh tomato flavor. Proc. Fla. State Hort. Soc., 113, 289294.
  • Tieman, D., Bliss, P., McIntyre, L.M., Blandon-Ubeda, A., Bies, D., Odabasi, A.Z., Rodríguez, G.R., van der Knaap, E., Taylor, M.G., Goulet, C., Mageroy, M.H., Snyder, D.J., Colquhoun, T., Moskowitz, H., Clark, D.G., Sims, C., Bartoshuk, L. and Klee, H.J. (2012) The chemical interactions underlying tomato flavor preferences. Curr. Biol., 22, 10351039.
  • Tikunov, Y., Lommen, A., de Vos, C.H.R., Verhoeven, H.A., Bino, R.J., Hall, R.D. and Bovy, A.G. (2005) A novel approach for nontargeted data analysis for metabolomics Large-scale profiling of tomato fruit volatiles. Plant Physiol., 139, 11251137.
  • Tucker, G.A. (1993) Introduction. In Biochemistry of Fruit Ripening (Seymour, G.B., Taylor, J.E. and Tucker, G.A., eds), pp. 343. London: Chapman and Hall.
  • Vivian-Smith, A., Luo, M., Chaudhury, A. and Koltunow, A. (2001) Fruit development is actively restricted in the absence of fertilization in Arabidopsis. Development, 128, 23212331.
  • Vriezen, W.H., Feron, R., Maretto, F., Keijman, J. and Mariani, C. (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol., 177, 6076.
  • Yao, J.-L., Dong, Y.-H. and Morris, B.A.M. (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc. Natl Acad. Sci., 98, 13061311.