SEARCH

SEARCH BY CITATION

References

  • Aharoni, A., Giri, A.P., Deuerlein, S., Griepink, F., de Kogel, W.J., Verstappen, F.W.A., Verhoeven, H.A., Jongsma, M.A., Schwab, W. and Bouwmeester, H.J. (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell, 15, 28662884.
  • Aharoni, A., Giri, A.P., Verstappen, F.W.A., Bertea, C.M., Sevenier, R., Sun, Z.K., Jongsma, M.A., Schwab, W. and Bouwmeester, H.J. (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell, 16, 31103131.
  • Aharoni, A., Jongsma, M., Kim, T.-Y., Ri, M.-B., Giri, A., Verstappen, F., Schwab, W. and Bouwmeester, H. (2006) Metabolic engineering of terpenoid biosynthesis in plants. Phytochem. Rev. 5, 4958.
  • Cardoza, Y.J., Alborn, H.T. and Tumlinson, J.H. (2002) In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J. Chem. Ecol. 28, 161174.
  • Clavijo McCormick, A., Unsicker, S.B. and Gershenzon, J. (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 17, 303310.
  • Davidovich-Rikanati, R., Sitrit, Y., Tadmor, Y., Iijima, Y., Bilenko, N., Bar, E., Carmona, B., Fallik, E., Dudai, N., Simon, J.E., Pichersky, E. and Lewinsohn, E. (2007) Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nat. Biotechnol. 25, 899901.
  • De Vos, R.C.H., Moco, S., Lommen, A., Keurentjes, J.J.B., Bino, R.J. and Hall, R.D. (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2, 778791.
  • Degenhardt, J., Gershenzon, J., Baldwin, I.T. and Kessler, A. (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr. Opin. Biotechnol. 14, 169176.
  • Delphia, C., Mescher, M. and De Moraes, C. (2007) Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. J. Chem. Ecol. 33, 9971012.
  • Dicke, M. and Baldwin, I.T. (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 15, 167175.
  • Dicke, M., Van Beek, T.A., Posthumus, M.A., Ben Dom, N., Van Bokhoven, H. and De Groot, A. (1990) Isolation and identification of volatile kairomone that affects acarine predator-prey interactions Involvement of host plant in its production. J. Chem. Ecol. 16, 381396.
  • Dicke, M. and Van Loon, J.J.A. (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97, 237249.
  • van Driesche, R.G., Heinz, K.M., van Lenteren, J.C., Loomans, A., Wick, R., Smith, T., Lopes, P., Sanderson, J.P., Daughtrey, M., and Brownbridge, M (1999) Western Flower Thrips in Greenhouses: A Review of its Biological Control and other Methods, Floral Facts. University of Massachusetts. p. 30.
  • Dudareva, N. and Pichersky, E. (2008) Metabolic engineering of plant volatiles. Curr. Opin. Biotechnol. 19, 181189.
  • Kamatou, G.P.P. and Viljoen, A.M. (2008) Linalool—a review of a biologically active compound of commercial importance. Nat. Prod. Commun. 3, 11831192.
  • Kessler, A. and Baldwin, I.T. (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291, 21412144.
  • Koschier, E.H., De Kogel, W.J. and Visser, J.H. (2000) Assessing the attractiveness of volatile plant compounds to western flower thrips Frankliniella occidentalis. J. Chem. Ecol. 26, 26432655.
  • Lavy, M., Zuker, A., Lewinsohn, E., Larkov, O., Ravid, U., Vainstein, A. and Weiss, D. (2002) Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol. Breed. 9, 103111.
  • Lewinsohn, E., Schalechet, F., Wilkinson, J., Matsui, K., Tadmor, Y., Nam, K.-H., Amar, O., Lastochkin, E., Larkov, O., Ravid, U., Hiatt, W., Gepstein, S. and Pichersky, E. (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol. 127, 12561265.
  • Loughrin, J., Potter, D. and Hamilton-Kemp, T. (1995) Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle (Popillia japonica Newman). J. Chem. Ecol. 21, 14571467.
  • Lücker, J., Bouwmeester, H.J., Schwab, W., Blaas, J., Van Der Plas, L.H.W. and Verhoeven, H.A. (2001) Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-d-glucopyranoside. Plant J. 27, 315324.
  • Maffei, M.E., Gertsch, J. and Appendino, G. (2011) Plant volatiles: production, function and pharmacology. Nat. Prod. Rep. 28, 13591380.
  • Manjunatha, M., Pickett, J.A., Wadhams, L.J. and Nazzi, F. (1998) Response of western flower thrips, Frankliniella occidentals and its predator Amblyseius cucumeris to chrysanthemum volatiles in olfactometer and greenhouse trials. Int. J. Trop. Insect Sci. 18, 139144.
  • Miller, B., Madilao, L.L., Ralph, S. and Bohlmann, J. (2005) Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol. 137, 369382.
  • Mithöfer, A., Wanner, G. and Boland, W. (2005) Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol. 137, 11601168.
  • Moco, S., Bino, R.J., Vorst, O., Verhoeven, H.A., De Groot, J., Van Beek, T.A., Vervoort, J. and Ric De Vos, C.H. (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol. 141, 12051218.
  • Outchkourov, N.S., Peters, J., de Jong, J., Rademakers, W. and Jongsma, M.A. (2003) The promoter-terminator of chrysanthemum rbcS1 directs very high expression levels in plants. Planta, 216, 10031012.
  • Pabst, A., Barron, D., Sémon, E. and Schreier, P. (1991) Isolation of a novel linalool disaccharide glycoside from raspberry fruit. Tetrahedron Lett. 32, 48854888.
  • Pankoke, H., Bowers, M.D. and Dobler, S. (2010) Influence of iridoid glycoside containing host plants on midgut β-glucosidase activity in a polyphagous caterpillar, Spilosoma virginica Fabricius (Arctiidae). J. Insect Physiol. 56, 19071912.
  • Paré, P.W. and Tumlinson, J.H. (1997) De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114, 11611167.
  • Paré, P.W. and Tumlinson, J.H. (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol. 121, 325332.
  • Pichersky, E. and Gershenzon, J. (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5, 237243.
  • Raguso Robert, A. and Pichersky, E. (1999) A day in the life of a linalool molecule: chemical communication in a plant-pollinator system. Part 1: linalool biosynthesis in flowering plants. Plant Species Biol. 14, 95120.
  • Reitz, S.R. (2009) Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): the making of a pest. Fla. Entomol. 92, 713.
  • Schijlen, E.G.W.M., de Vos, C.H.R., Martens, S., Jonker, H.H., Rosin, F.M., Molthoff, J.W., Tikunov, Y.M., Angenent, G.C., van Tunen, A.J. and Bovy, A.G. (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol. 144, 15201530.
  • Schoonhoven, L.M., Loon, J.J.A. and Dicke, M.. (2005) Insect-plant Biology. Oxford, UK: Oxford University Press.
  • Tikunov, Y., Lommen, A., De Vos, C.H.R., Verhoeven, H.A., Bino, R.J., Hall, R.D. and Bovy, A.G. (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol. 139, 11251137.
  • Tommasini, M.G. and Maini, S. (1995) Frankliniella occidentalis and other thrips harmful to vegetable and ornamental crops in Europe. In Biological Control of Thrips Pests. Wageningen Agricultural University Papers (Loomans, A.J.M., van Lenteren, J.C., Tommasini, M.G., Maini, S. and Riudavets, J., eds), pp. 142, Wageningen: Wageningen Agricultural University Papers.
  • Turlings, T.C. and Ton, J. (2006) Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr. Opin. Plant Biol. 9, 421427.
  • Turlings, T.C.J., Lengwiler, U.B., Bernasconi, M.L. and Wechsler, D. (1998) Timing of induced volatile emissions in maize seedlings. Planta, 207, 146152.
  • Winterhalter, P., Skouroumounis, G., Berger, R., Babel, W., Blanch, H., Cooney, C., Enfors, S., Eriksson, K., Fiechter, A., Klibanov, A., Mattiasson, B., Primrose, S., Rehm, H., Rogers, P., Sahm, H., Schügerl, K., Tsao, G., Venkat, K., Villadsen, J., von Stockar, U. and Wandrey, C. (1997) Glycoconjugated Aroma Compounds: Occurrence, Role and Biotechnological Transformation Biotechnology of Aroma Compounds, pp. 73105. Heidelberg: Springer Berlin.
  • Yang, L. (2008) Integration of host plant resistance and biological control: using Arabidopsis-insect interactions as a model system. In Laboratory of Entomology, pp. 5470. PhD thesis, Wageningen: Wageningen University.
  • Yang, T., Stoopen, G., Wiegers, G., Mao, J., Wang, C., Dicke, M. and Jongsma, M.A. (2012) Pyrethrins protect pyrethrum leaves against attack by western flower thrips, Frankliniella occidentalis. J. Chem. Ecol. 38, 370377.
  • Yang, T., Stoopen, G., Yalpani, N., Vervoort, J., de Vos, R., Voster, A., Verstappen, F.W.A., Bouwmeester, H.J. and Jongsma, M.A. (2011) Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Metab. Eng. 13, 414425.
  • Zou, J. and Cates, R.G. (1997) Effects of terpenes and phenolic and flavonoid glycosides from Douglas fir on western spruce budworm larval growth, pupal weight, and adult weight. J. Chem. Ecol. 23, 23132326.