SEARCH

SEARCH BY CITATION

References

  • Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W. and Noble, W.S. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202W208.
  • Bohnert, H.J., Gong, Q., Li, P. and Ma, S. (2006) Unraveling abiotic stress tolerance mechanisms– getting genomics going. Curr. Opin. Plant Biol. 9, 180188.
  • Bouché, N., Yellin, A.A., Snedden, W. and Fromm, H. (2005) Plant-specific calmodulin-binding proteins. Annu. Rev. Plant Biol. 56, 435466.
  • Broun, P. (2004) Transcription factors as tools for metabolic engineering in plants. Curr. Opin. Plant Biol. 7, 202209.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735743.
  • Dafny-Yelin, M., Guterman, I., Menda, N., Ovadis, M., Shalit, M., Pichersky, E., Zamir, D., Lewinsohn, E., Adam, Z., Weiss, D. and Vainstein, A. (2005) Flower proteome: changes in protein spectrum during the advanced stages of rose petal development. Planta, 222, 3746.
  • Dai, F., Zhang, C., Jiang, X., Kang, M., Yin, X., Lü, P., Zhang, X., Zheng, Y. and Gao, J. (2012) RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals. Plant Physiol. 160, 20642082.
  • Fang, Y., You, J., Xie, K., Xie, W. and Xiong, L. (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol. Genet. Genomics, 280, 547563.
  • Fuchs, S., Grill, E., Meskiene, I. and Schweighofer, A. (2013) Type 2C protein phosphatases in plants. FEBS J. 280, 681693.
  • Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L.S.P., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39, 863876.
  • Hao, Y., Song, Q., Chen, H., Zou, H., Wei, W., Kang, X., Ma, B., Zhang, W., Zhang, J. and Chen, S. (2010) Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta, 232, 10331043.
  • Hao, Y., Wei, W., Song, Q., Chen, H., Zhang, Y., Wang, F., Zou, H., Lei, G., Tian, A., Zhang, W., Ma, B., Zhang, J. and Chen, S. (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J. 68, 302313.
  • Hirayama, T. and Shinozaki, K. (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J. 61, 10411052.
  • Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q. and Xiong, L. (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl Acad. Sci. USA, 103, 1298712992.
  • Hu, H., You, J., Fang, Y., Zhu, X., Qi, Z. and Xiong, L. (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol. Biol. 67, 169181.
  • Hussain, S.S., Kayani, M.A. and Amjad, M. (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol. Prog. 27, 297306.
  • Israelsson, M., Siegel, R.S., Young, J., Hashimoto, M., Iba, K. and Schroeder, J.I. (2006) Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr. Opin. Biotech. 9, 654663.
  • Izumitsu, K., Yoshimi, A., Hamada, S., Morita, A., Saitoh, Y. and Tanaka, C. (2009) Dic2 and Dic3 loci confer osmotic adaptation and fungicidal sensitivity independent of the HOG pathway in Cochliobolus heterostrophus. Mycol. Res. 113, 12081215.
  • Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 39013907.
  • Jeong, J.S., Kim, Y.S., Baek, K.H., Jung, H., Ha, S.-H., Do Choi, Y., Kim, M., Reuzeau, C. and Kim, J. (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 153, 185197.
  • Jeong, J.S., Kim, Y.S., Redillas, M.C., Jang, G., Jung, H., Bang, S.W., Choi, Y.D., Ha, S.H., Reuzeau, C. and Kim, J.K. (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol. J. 11, 101114.
  • Ji, S., Lu, Y., Feng, J., Wei, G., Li, J., Shi, Y., Fu, Q., Liu, D., Luo, J. and Zhu, Y. (2003) Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res. 31, 25342543.
  • Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., D'Angelo, C., Bornberg-Bauer, E., Kudla, J., and Harter, K. (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 50, 347363.
  • Le, D.T., Nishiyama, R., Watanabe, Y., Mochida, K., Yamaguchi-Shinozaki, K., Shinozaki, K. and Tran, L.S.P. (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res. 18, 263276.
  • Lu, M., Ying, S., Zhang, D.F., Shi, Y.S., Song, Y.C., Wang, T.Y. and Li, Y. (2012) A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep. 31, 17011711.
  • Ma, N., Cai, L., Lu, W., Tan, H. and Gao, J. (2005) Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes. Sci. China Ser. C, 48, 434444.
  • Ma, N., Tan, H., Liu, X., Xue, J., Li, Y. and Gao, J. (2006) Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. J. Exp. Bot. 57, 27632773.
  • Ma, N., Xue, J., Li, Y., Liu, X., Dai, F., Jia, W., Luo, Y. and Gao, J. (2008) Rh-PIP2;1, a rose aquaporin gene, is involved in ethylene-regulated petal expansion. Plant Physiol. 148, 894907.
  • Majumder, A., Sengupta, S. and Goswami, L. (2010) Osmolyte regulation in abiotic stress. In Abiotic Stress Adaptation in Plants (Pareek, A., Sopory, S.K. and Bohnert, H.J., eds), pp. 349370. Netherlands: Springer.
  • Mauch-Mani, B. and Flors, V. (2009) The ATAF1 transcription factor: at the convergence point of ABA-dependent plant defense against biotic and abiotic stresses. Cell Res. 19, 13221323.
  • Merchant, A., Tausz, M., Arndt, S.K. and Adams, M.A. (2006) Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant, Cell Environ. 29, 20172029.
  • Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D.J. and Hasegawa, P.M. (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell, 19, 14031414.
  • Nakashima, K., Tran, L.S.P., Nguyen, D.V., Fujita, M., Maruyama, K., Todaka, D., Ito, Y., Hayashi, N., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51, 617630.
  • Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2012) NAC transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta, 1819, 97103.
  • Nuruzzaman, M., Manimekalai, R., Sharoni, A.M., Satoh, K., Kondoh, H., Ooka, H. and Kikuchi, S. (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene, 465, 3044.
  • Ohnishi, T., Sugahara, S., Yamada, T., Kikuchi, K., Yashiba, Y., Hirano, H.-Y. and Tsutsumi, N. (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet. Syst. 80, 135139.
  • Olsen, A.N., Ernst, H.A., Leggio, L.L. and Skriver, K. (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10, 7987.
  • Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., Hayashizaki, Y., Suzuki, K., Kojima, K., Takahara, Y., Yamamoto, K. and Kikuchi, S. (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10, 239247.
  • Preuss, M.L., Delmer, D.P. and Liu, B. (2003) The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol. 132, 154160.
  • Puranik, S., Sahu, P.P., Srivastava, P.S. and Prasad, M. (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci. 17, 369381.
  • Ramegowda, V., Senthil-Kumar, M., Nataraja, K.N., Reddy, M.K., Mysore, K.S. and Udayakumar, M. (2012) Expression of a finger millet transcription factor, EcNAC1, in tobacco confers abiotic stress-tolerance. PLoS ONE, 7, e40397.
  • Redillas, M.C., Jeong, J.S., Kim, Y.S., Jung, H., Bang, S.W., Choi, Y.D., Ha, S.H., Reuzeau, C. and Kim, J.K. (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol. J. 10, 792805.
  • Shao, H., Chu, L., Jaleel, C.A., Manivannan, P., Panneerselvam, R. and Shao, M. (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants–biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit. Rev. Biotechnol. 29, 131151.
  • Shinozaki, K., Yamaguchi-Shinozaki, K. and Seki, M. (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6, 410417.
  • Souer, E., Houwelingen, A., Kloos, D., Mol, J. and Koes, R. (1996) The No Apical Meristem gene of petunia is required for pattern formationin embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 85, 159170.
  • Szekely, G., Abraham, E., Cseplo, A., Rigo, G., Zsigmond, L., Csiszar, J., Ayaydin, F., Strizhov, N., Jasik, J., Schmelzer, E., Koncz, C. and Szabados, L. (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 53, 1128.
  • Takasaki, H., Maruyama, K., Kidokoro, S., Ito, Y., Fujita, Y., Shinozaki, K., Yamaguchi-Shinozaki, K. and Nakashima, K. (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol. Genet. Genomics, 284, 173183.
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 27312739.
  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 46734680.
  • Tran, L.S.P., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 16, 24812498.
  • Umezawa, T., Fujita, M., Fujita, Y., Yamaguchishinozaki, K. and Shinozaki, K. (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr. Opin. Biotech. 17, 113122.
  • Wang, H., Zhao, Q., Chen, F., Wang, M. and Dixon, R.A. (2011) NAC domain function and transcriptional control of a secondary cell wall master switch. Plant J. 68, 11041114.
  • Wang, N., Zheng, Y., Xin, H., Fang, L. and Li, S. (2012) Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Rep. 10, 239247.
  • Warren, C.R., Bleby, T. and Adams, M.A. (2007) Changes in gas exchange versus leaf solutes as a means to cope with summer drought in Eucalyptus marginata. Oecologia, 154, 110.
  • Wu, Y., Deng, Z., Lai, J., Zhang, Y., Yang, C., Yin, B., Zhao, Q., Zhang, L., Li, Y., Yang, C. and Xie, Q. (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res. 19, 12791290.
  • Xie, Q., Frugis, G., Colgan, D. and Chua, N.H. (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Gene Dev. 14, 30243036.
  • Xiong, L. and Zhu, J.K. (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell Environ. 25, 131139.
  • Xue, G.P., Way, H.M., Richardson, T., Drenth, J., Joyce, P.A. and McIntyre, C.L. (2011) Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol. Plant, 4, 697712.
  • Yamada, K., Norikoshi, R., Suzuki, K., Imanishi, H. and Ichimura, K. (2009) Determination of subcellular concentrations of soluble carbohydrates in rose petals during opening by nonaqueous fractionation method combined with infiltration-centrifugation method. Planta, 230, 11151127.
  • Yamaguchi-Shinozaki, K. and Shinozaki, K. (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57, 781803.
  • Yang, Q., Chen, Z.Z., Zhou, X.F., Yin, H.B., Li, X., Xin, X.F., Hong, X.H., Zhu, J.K. and Gong, Z. (2008) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol. Plant, 2, 2231.
  • Yoo, S.D., Cho, Y.H. and Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 15651572.
  • Yoshimi, A., Imanishi, J., Gafur, A., Tanaka, C. and Tsuda, M. (2003) Characterization and genetic analysis of laboratory mutants of Cochliobolus heterostrophus resistant to dicarboximide and phenylpyrrole fungicides. J. Gen. Plant Pathol. 69, 101108.
  • Zhang, K. and Gan, S.S. (2012) An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol. 158, 961969.
  • Zonia, L. and Munnik, T. (2007) Life under pressure: hydrostatic pressure in cell growth and function. Trends Plant Sci. 12, 9097.