SEARCH

SEARCH BY CITATION

References

  • Alonso-Magdalena, P., Quesada, I. and Nadal, A. (2011) Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 7, 346353.
  • Amet, N., Wang, W. and Shen, W.C. (2010) Human growth hormone-transferrin fusion protein for oral delivery in hypophysectomized rats. J. Control. Release, 141, 177182.
  • Angelis, I.D. and Turco, L. (2011) Caco-2 cells as a model for intestinal absorption. Curr. Protoc. Toxicol., Chapter 20, Unit20.6.
  • Asfari, M., Janjic, D., Meda, P., Li, G., Halban, P.A. and Wollheim, C.B. (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin- secreting cell lines. Endocrinology, 130, 167178.
  • Bai, Y., Ann, D.K. and Shen, W.C. (2005) Recombinant granulocyte colony-stimulating factor transferrin fusion protein as an oral myelopoietic agent. Proc. Natl Acad. Sci. USA, 102, 72927296.
  • Bobst, C.E., Wang, S., Shen, W.C. and Kaltashov, I.A. (2012) Mass spectrometry study of a transferrin-based protein drug reveals the key role of protein aggregation for successful oral delivery. Proc. Natl Acad. Sci. USA, 109, 1354413548.
  • Brandsma, M., Wang, X., Diao, H., Kohalmi, S.E., Jevnikar, A.M. and Ma, S. (2009) A proficient approach to the production of therapeutic glucagon-like peptide-1 (GLP-1) in transgenic plants. Open Biotechnol. J. 3, 5056.
  • Brandsma, M., Diao, H., Wang, X., Kohalmi, S.E., Jevnikar, A.M. and Ma, S. (2010) Plant-derived human serum transferrin demonstrates multiple functions. Plant Biotechnol. J. 8, 489505.
  • Brandsma, M., Jevnikar, A.M. and Ma, S. (2011) Recombinant human transferrin: beyond iron binding and transport. Biotechnol. Adv. 29, 230238.
  • Buteau, J., Roduit, R., Susini, S. and Prentki, M. (1999) Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia, 42, 856864.
  • Buteau, J., Foisy, S., Rhodes, C.J., Carpenter, L., Biden, T.J. and Prentki, M. (2001) Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes, 50, 22372243.
  • Carrington, J.C. and Freed, D.D. (1990) Cap-independent enhancement of translation by a plant potyvirus 5'nontranslated region. J. Virol. 64, 15901597.
  • Chen, X., Lee, H.F., Zaro, J.L. and Shen, W.C. (2011) Effects of receptor binding on plasma half-life of bifunctional transferrin fusion proteins. Mol. Pharm. 8, 457465.
  • Chen, W., Wang, Lin, Wang, Y., Chen, Z., Liu, X., Liu, X.H. and Liu, L. (2012) Exendin-4 Protects MIN6 cells from t-BHP-induced Apoptosis via IRE1-JNK-Caspase-3 signaling. Int. J. Endocrinol. 2012, 54908.
  • Chirino, A.J., Ary, M.L. and Marshall, S.A. (2004) Minimizing the immunogenicity of protein therapeutics. Drug Discovery Today, 9, 8290.
  • Collins, G.S., Mallett, S., Omar, O. and Yu, L.M. (2011) Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Med. 9, 103.
  • Feng, Z.C., Li, J., Turco, B.A., Riopel, M., Yee, S.P. and Wang, R. (2012a) Critical role of c-Kit in beta cell function: increased insulin secretion and protection against diabetes in a mouse model. Diabetologia, 55, 22142225.
  • Feng, Z.C., Donnelly, L., Li, J., Krishnamurthy, M., Riopel, M. and Wang, R. (2012b) Inhibition of Gsk3b activity improves b-cell function in c-KitWv/+ male mice. Lab. Invest. 92, 543555.
  • Feng, Z.C., Riopel, M., Li, J., Donnelly, L. and Wang, R. (2013) Down-regulation of Fas activity could rescue early onset of diabetes in c-KitWv/+ mice. Am. J. Physiol. Endocrinol. Metab. 67, E557E565.
  • Gahr, S., Merger, M., Bollheimer, L.C., Hammerschmied, C.G., Scholmerich, J. and Hugl, S.R. (2002) Hepatocyte growth factor stimulates proliferation of pancreatic beta-cells particularly in the presence of subphysiological glucose concentrations. J. Mol. Endocrinol. 28, 99110.
  • Garber, A.J. (2011) Long-acting glucagon-like peptide 1 receptor agonists: a review of their efficacy and tolerability. Diabetes Care, 34, S279S284.
  • Giorgino, F., Natalicchio, A., Leonardini, A. and Laviola, L. (2007) Exploiting the pleiotropic actions of GLP-1 for the management of type 2 diabetes mellitus and its complications. Diabetes Res. Clin. Pract. 78, S59S67.
  • Hadjiyanni, L., Baggio, L.L., Poussier, P. and Drucker, D.J. (2008) Exendin-4 modulates diabetes onset in nonobese diabetic mice. Endocrinology, 149, 13381349.
  • Holkeri, H. and Makarow, M. (1998) Different degradation pathways for heterologous glycoproteins in yeast. FEBS Lett. 429, 162166.
  • Holst, J.J. and Gromada, J. (2004) Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am. J. Physiol. Endocrinol. Metab. 287, E199E206.
  • Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eicholtz, D., Rogers, S.G. and Fraley, R.T. (1985) A simple and general method for transferring genes into plants. Science, 227, 12291231.
  • Huebers, H.A. and Finch, C.A. (1987) The physiology of transferrin and transferrin receptors. Physiol. Rev. 67, 520582.
  • Hügl, S.R., White, M.F. and Rhodes, C.J. (1998) Insulin-like growth factor I (IGF-I)-stimulated pancreatic beta-cell growth is glucosedependent. Synergistic activation of insulin receptor substratemediated signal transduction pathways by glucose and IGF-I in INS-1 cells. J. Biol. Chem. 273, 1777117779.
  • Hui, H., Wright, C. and Perfetti, R. (2001) Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells. Diabetes, 50, 785796.
  • Jiang, Y.Y., Liu, C., Hong, M.H., Zhu, S.J. and Pei, Y.Y. (2007) Tumor cell targeting of transferrin-PEG-TNF-alpha conjugate via a receptor-mediated delivery system: design, synthesis, and biological evaluation. Bioconjug. Chem. 18, 4149.
  • Karin, M. and Mintz, B. (1981) Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells. J. Biol. Chem. 256, 32453252.
  • Kieffer, T.M. and Habener, J.F. (1999) The glucagon-like peptides. Endocr. Rev. 6, 876913.
  • Kim, P.H., Eckmann, L., Lee, W.J., Han, W. and Kagnoff, M.F. (1998) Cholera toxin and cholera toxin B subunit induce IgA switching through the action of TGF-beta 1. J. Immunol. 160, 11981203.
  • Kim, B.J., Zhou, J., Martin, B., Carlson, O.D., Maudsley, S., Greig, N.H., Mattson, M.P., Ladenheim, E.E., Wustner, J., Turner, A., Sadeghi, H. and Egan, J.M. (2010) Transferrin fusion technology: a novel approach to prolonging biological half-life of insulinotropic peptides. J. Pharmacol. Exp. Ther. 334, 682692.
  • Koliaki, C. and Doupis, J. (2011) Incretin-based therapy: a powerful and promising weapon in the treatment of type 2 diabetes mellitus. Diabetes Ther. 2, 101121.
  • Kwon, K.C., Nityanandam, R., New, J.S. and Daniell, H. (2012) Oral delivery of bioencapsulated exendin-4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta-TC6 cells. Plant Biotechnol. J. 11, 6676.
  • Kyriacou, A. and Ahmed, A.B. (2010) Exenatide use in the management of type 2 diabetes mellitus. Pharmaceuticals, 3, 25542567.
  • Lakatos, L., Szittya, G., Silhavy, D. and Burgyan, J. (2004) Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J. 23, 876884.
  • Li, H. and Qian, Z.M. (2002) Transferrin/transferrin receptor-mediated drug delivery. Med. Res. Rev. 22, 225250.
  • Lovshin, J.A. and Drucker, D.J. (2009) Incretin-based therapies for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 5, 262269.
  • Ma, S. and Wang, A.M. (2012) Molecular farming in plants: host systems and technologies for expression and downstream processing. In Molecular Farming in Plants: Recent Advances and Future Prospects(Wang, A.M. and Ma, S., eds), pp. 120. Berlin: Springer.
  • Ma, S., Huang, Y., Yin, Z., Menassa, R., Brandle, J.E. and Jevnikar, A.M. (2004) Induction of oral tolerance to prevent diabetes with transgenic plants requires glutamic acid decarboxylase (GAD) and IL-4. Proc. Natl Acad. Sci. USA, 101, 56805685.
  • Ma, S., Huang, Y., Davis, A., Yin, Z.Q., Mi, Q., Menassa, R., Brandle, J. and Jevnikar, A.M. (2005) Production of biologically active human interleukin-4 in transgenic tobacco and potato. Plant Biotech. J. 3, 309318.
  • Melanie, B. (2005) Transferrin' the load. Nat. Rev. Drug Discov. 4, 537.
  • Molitch, M.E. (2013) Current state of type 2 diabetes management. Am. J. Manag. Care, 19, s136s142.
  • Mudaliar, S. and Henry, R.R. (2012) The incretin hormones: from scientific discovery to practical therapeutics. Diabetologia, 55, 18651868.
  • Pohl, M. and Wank, S.A. (1998) Molecular cloning of the helodermin and exendin-4 cDNAs in the lizard. Relationship to vasoactive intestinal polypeptide/pituitary adenylate cyclase activating polypeptide and glucagon-like peptide 1 and evidence against the existence of mammalian homologues. J. Biol. Chem. 273, 97789784.
  • Potenza, M.A., Nacci, C., Gagliardi, S. and Montagnani, M. (2011) Cardiovascular complications in diabetes: lessons from animal models. Curr. Med. Chem. 18, 18061819.
  • Robles, G.I. and Singh-Franco, D. (2009) A review of exenatide as adjunctive therapy in patients with type 2 diabetes. Drug Des. Devel. Ther. 3, 219240.
  • Rogers, J.C. and Milliman, C. (1983) Isolation and sequence analysis of a barley alpha-amylase cDNA clone. J. Biol. Chem. 258, 81698174.
  • Schwartz, S. and Defronzo, R.A. (2013) Is incretin-based therapy ready for the care of hospitalized patients with type 2 diabetes? Diabetes Care, 36, 21072111.
  • Shaji, J. and Patole, V. (2008) Protein and peptide drug delivery: oral approaches. Indian J. Pharm. Sci. 70, 269277.
  • Tremblay, R., Wang, D., Jevnikar, A.M. and Ma, S. (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol. Adv. 28, 214221.
  • Tremblay, R., Feng, M., Menassa, R., Huner, N.P., Jevnikar, A.M. and Ma, S. (2011) High-yield expression of recombinant soybean agglutinin in plants using transient and stable systems. Transgenic Res. 20, 345356.
  • Trinh, R., Gurbaxani, B., Morrison, S.L. and Seyfzadeh, M. (2004) Optimization of codon pair use within the (GGGGS)3 linker sequence results in enhanced protein expression. Mol. Immunol. 40, 717722.
  • Wang, D.J., Brandsma, M., Yin, Z., Wang, A., Jevnikar, A.M. and Ma, S.W. (2008) A novel platform for biologically active recombinant human interleukin-13 production. Plant Biotechnol. J. 6, 504515.
  • Xia, C.Q., Wang, J. and Shen, W.C. (2000) Hypoglycemic effect of insulin-transferrin conjugate in streptozotocin-induced diabetic rats. J. Pharmacol. Exp. Ther. 295, 594600.
  • Xiao, Q., Giguere, J., Parisien, M., Jeng, W., St-Pierre, S.A., Brubaker, P.L. and Wheeler, M.B. (2001) Biological activities of glucagon-like peptide-1 analogues in vitro and in vivo. Biochemistry, 40, 28602869.
  • Yang, F., Lum, J.B., McGill, J.R., Moore, C.M., Naylor, S.L., van Bragt, P.H., Baldwin, W.D. and Bowman, B.H. (1984) Human transferrin: cDNA characterization and chromosomal localization. Proc. Natl Acad. Sci. USA, 81, 27522756.
  • Zhang, P., Zhang, X., Brown, J., Vistisen, D., Sicree, R., Shaw, J. and Nichols, G. (2010) Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87, 293301.
  • Zhang, D., Nandi, S., Bryan, P., Pettit, S., Nguyen, D., Santos, M.A. and Huang, N. (2010) Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.). Protein Expr. Purif. 74, 6979.