SEARCH

SEARCH BY CITATION

REFERENCES

  • Andrés-Colás N., Perea-García A., Puig S. & Peñarrubia L. (2010) Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles. Plant Physiology 153, 170184.
  • Apel K. & Hirt H. (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology 55, 373399.
  • Baker C.J. & Mock N.M. (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell, Tissue and Organ Culture 39, 712.
  • Burkhead J.L., Gogolin Reynolds K.A., Abdel-Ghany S.E., Cohu C.M. & Pilon M. (2009) Copper homeostasis. New Phytologist 182, 799816.
  • Cuin T.A. & Shabala S. (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant, Cell & Environment 30, 875885.
  • Demidchik V., Bowen H.C., Maathuis F.J.M., Shabala S.N., Tester M.A., White P.J. & Davies J.M. (2002) Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant Journal 32, 799808.
  • Demidchik V., Shabala S.N., Coutts K.B., Tester M.A. & Davies J.M. (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. Journal of Cell Science 116, 8188.
  • Demidchik V., Shabala S. & Davies J. (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant Journal 49, 377386.
  • Demidchik V., Cuin T.A., Svistunenko D., Smith S.J., Miller A.J., Shabala S., Sokolik A. & Yurin V. (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science 123, 14681479.
  • Foreman J., Demidchik V., Bothwell J.H.F., et al. (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442446.
  • Fry S.C. (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochemical Journal 332, 507515.
  • Fry S.C., Miller J.G. & Dumville J.C. (2002) A proposed role for copper ions in cell wall loosening. Plant and Soil 247, 5767.
  • Garcia-Molina A., Andrés-Colás N., Perea-García A., del Valle-Tasco S., Peñarrubia L. & Puig S. (2011) The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency. Plant Journal 65, 848860.
  • Gunsé B., Rodrigo A. & Poschenrieder C. (2010) Desarrollo de un Sistema Electrofisiológico con Control Automatizado del Posicionamiento de los Microelectrodos. National Instruments Spain. http://sine.ni.com/cs/app/doc/p/id/cs-12681
  • Halliwell B. & Gutteridge J.M.C. (1984) Lipid peroxidation, oxygen radicals, cell damage and antioxidant therapy. Lancet 1, 13961397.
  • Halliwell B. & Gutteridge J.M.C. (1999) Free Radicals in Biology and Medicine. Oxford University Press, Oxford.
  • Hamilton V.T., Habbersewtt M.C. & Herman C. (1980) Flow microfluorometric analysis of cellular DNA: critical comparison of mithramycin and propidium iodide. Journal of Histochemistry and Cytochemistry 28, 11251126.
  • Jones K.H. & Senft J.A. (1985) An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. Journal of Histochemistry and Cytochemistry 33, 7779.
  • Kampfenkel K., Kushnir S., Babiychuk E., Inze D. & Van M.M. (1995) Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. Journal of Biological Chemistry 270, 2847928486.
  • Kim B.E., Nevitt T. & Thiele D.J. (2008) Mechanisms for copper acquisition, distribution and regulation. Nature Chemical Biology 4, 176185.
  • Klaumann S., Nickolaus S.D., Furst S.H., Starck S., Schneider S., Neuhaus H.E. & Trentmann O. (2011) The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytologist 192, 393404.
  • Koyama H., Toda T., Yokota S., Dawair Z. & Hara T. (1995) Effects of aluminum and pH on root growth and cell viability in Arabidopsis thaliana strain Landsberg in hydroponic culture. Plant and Cell Physiology 36, 201205.
  • Krysan P.H., Young J.C., Tax F. & Sussman M.R. (1996) Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proceedings of the National Academy of Sciences of the United States of America 93, 81458150.
  • Lecourieux D., Mazars C., Pauly N., Ranjeva R. & Pugin A. (2002) Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. The Plant Cell 14, 26272641.
  • Lequeux H., Hermans C., Lutts S. & Verbruggen N. (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry 48, 673682.
  • Marschner H. (2012) Mineral Nutrition of Higher Plants, 3rd edn, Academic Press, London, p. 651.
  • Murphy A. & Taiz L. (1997) Correlation between potassium efflux and copper sensitivity in 10 Arabidopsis ecotypes. New Phytologist 136, 211222.
  • Murphy A.S., Eisinger W.R., Shaff J.E., Kochian L.V. & Taiz L. (1999) Early copper-induced leakage of K+ from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiology 121, 13751382.
  • Papeschi G., Mancuso S. & Marras A.M. (2000) Electrochemical behavior of a Cu/CuSe microelectrode and its application in detecting temporal and spatial localisation of copper(II) fluxes along Olea europaea roots. Journal of Solid State Electrochemistry 4, 325329.
  • Peñarrubia L., Andrés-Colás N., Moreno J. & Puig S. (2010) Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator? Journal of Biological and Inorganic Chemistry 15, 2936.
  • Pilon M. (2011) Moving copper in plants. New Phytologist 192, 305307.
  • Pospíšil P. (2009) Production of reactive oxygen species by photosystem II. Biochimica et Biophysica Acta-Bioenergetics 1787, 11511160.
  • Pospíšil P., Arato A., Krieger-Liszkay A. & Rutherford A.W. (2004) Hydroxyl radical generation by photosystem II. Biochemistry 43, 67836792.
  • Rodríguez-Serrano M., Romero-Puertas M.C., Zabalza A., Corpas F.J., Gómez M., del Río L.A. & Sandalio L.M. (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant, Cell & Environment 29, 15321544.
  • Sancenón V., Puig S., Mira H., Thiele D.J. & Peñarrubia L. (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Molecular Biology 51, 577587.
  • Sancenón V., Puig S., Mateu-Andres I., Dorcey E., Thiele D.J. & Peñarrubia L. (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. Journal of Biological Chemistry 279, 1534815355.
  • Sandalio L.M., Rodríguez-Serrano M., Romero-Puertas M.C. & del Río L.A. (2008) Imaging of reactive oxygen species and nitric oxide in vivo in plant tissues. Methods in Enzymology 440, 398409.
  • Sandmann G. & Böger P. (1983) Inorganic Plant Nutrition, Vol. 15B. A. Laüchli & R.L. Bieleski, eds, Springer-Verlag, Berlin, pp. 563596.
  • Shabala S. (2009a) Metal cations in CO2 assimilation and conversion by plants. Journal of Metals 61, 2834.
  • Shabala S. (2009b) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. Journal of Experimental Botany 60, 709711.
  • Shabala S. & Shabala L. (2002) Kinetics of net H+, Ca2+, K+, Na+, NH4+, and Cl- fluxes associated with post-chilling recovery of plasma membrane transporters in Zea mays leaf and root tissues. Physiologia Plantarum 114, 4756.
  • Simon F., Varela D., Eguiguren A.E., Díaz L.F., Sala F. & Stutzin A. (2004) Hydroxyl radical activation of a Ca2+-sensitive nonselective cation channel involved in epithelial cell necrosis. American Journal of Physiology-Cell Physiology 287, 963970.
  • Šnyrychová I., Pospíšil P. & Nauš J. (2006) Reaction pathways involved in the production of hydroxyl radicals in thylakoid membrane: EPR spin-trapping study. Photochemical and Photobiological Science 5, 472476.
  • Terry B.R., Findlay G.P. & Tyerman S.D. (1992) Direct effects of Ca2+-channel blockers on plasma membrane cation channels of Amaranthus tricolor protoplasts. Journal of Experimental Botany 43, 14571473.
  • White P.J. & Davenport R.J. (2002) The voltage-independent cation channel in the plasma membrane of wheat roots is permeable to divalent cations and may be involved in cytosolic Ca2+ homeostasis. Plant Physiology 130, 13861395.
  • Wintz H., Fox T., Wu Y.-Y., Feng V., Chen W., Chang H.-S., Zhu T. & Vulpe C. (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. Journal of Biological Chemistry 278, 4764447653.
  • Wu X., Sinani D., Kim H. & Lee J. (2009) Copper transport activity of yeast Ctr1 is down-regulated via its C terminus in response to excess copper. Journal of Biological Chemistry 284, 41124122.
  • Yamasaki H., Hayashi M., Fukazawa M., Kobayashi Y. & Shikanai T. (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. The Plant Cell 21, 347361.
  • Yu S.P. (2003) Regulation and critical role of potassium homeostasis in apoptosis. Progress in Neurobiology 70, 363386.
  • Yu S.P., Yeh C.H., Sensi S.L., Gwag B.J., Canzoniero L.M.T., Farhangrazi Z.S., Ying H.S., Tian M., Dugan L.L. & Choi D.W. (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278, 114117.
  • Zepeda-Jazo I., Velarde-Buendia A.M., Enriquez-Figueroa R., Bose J., Shabala S., Muniz-Murguia J. & Pottosin I. (2011) Polyamines interact with hydroxyl radicals inactivating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiology 157, 21672180.