SEARCH

SEARCH BY CITATION

References

  • Affourtit C., Albury M.S., Krab K. & Moore A.L. (1999) Functional expression of the plant alternative oxidase affects growth of the yeast Schizosaccharomyces pombe. Journal of Biological Chemistry 274, 62126218.
  • Ali A., Medlyn B., Crous K. & Reich P. (2013) A trait-based ecosystem model analysis suggests that long-term responsiveness to rising atmospheric CO2 concentration is greater in slow-growing than fast-growing plants. Functional Ecology (in press).
  • Alscher G., Krug H. & Liebig H.P. (2001) Optimisation of CO2 and temperature control in greenhouse crops by means of growth models at different abstraction levels. II. Growth models and parameter generation for lettuce crops. Gartenbauwissenschaft 66, 153163.
  • Anten N.P.R. (2002) Evolutionarily stable leaf area production in plant populations. Journal of Theoretical Biology 217, 1532.
  • Anten N.P.R. (2005) Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence. Annals of Botany 95, 495506.
  • Arkebauer T.J., Weiss A., Sinclair T.R. & Blum A. (1994) In defense of radiation use efficiency: a response to Demetriades-Shah et al. Agricultural Forest Meteorology 68, 221227.
  • Atkin O.K. & Tjoelker M.G. (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science 8, 343351.
  • Aylott M.J., Casella E., Tubby I., Street N.R., Smith P. & Taylor G. (2008) Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytologist 178, 358370.
  • Baccar R., Fournier C., Dornbusch T., Andrieu B., Gouache D. & Robert C. (2011) Modelling the effect of wheat canopy architecture as affected by sowing density on Septoria tritici epidemics using a coupled epidemic–virtual plant model. Annals of Botany 108, 11791194.
  • Blackman V.H. (1919) The compound interest law and plant growth. Annals of Botany 33, 353360.
  • Blum A. (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research 112, 119123.
  • Boonman A., Anten N.P.R., Dueck T.A., Jordi W.J.R.M., van der Werf A., Voesenek L.A.C.J. & Pons T.L. (2006) Functional significance of shade-induced leaf senescence in dense canopies: an experimental test using transgenic tobacco. American Naturalist 168, 597607.
  • Boote K.J. & Tollenaar M. (1994) Modeling genetic yield potential. In Physiology and Determination of Crop Yield (eds K.J. Boote , J.M. Bennett , T.R. Sinclair & G.M. Paulsen ), pp. 533565. American Society of Agronomy, Madison, WI.
  • Boote K.J., Jones J.W. & Pickering N.B. (1996) Potential uses and limitations of crop models. Agronomy Journal 88, 704716.
  • Bouteillé M., Rolland G., Balsera C., Loudet O. & Muller B. (2012) Disentangling the intertwined genetic bases of root and shoot growth in Arabidopsis. PLoS ONE 7, e32319.
  • Brodribb T.J., Feild T.S. & Sack L. (2010) Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology 37, 488498.
  • Causton D.R. & Venus J.C. (1981) The Biometry of Plant Growth. Edward Arnold, London.
  • Cave G., Tolley L.C. & Strain B.R. (1981) Effect of carbon dioxide enrichment on chlorophyll content, starch content and starch grain structure in Trifolium subterraneum leaves. Physiologia Plantarum 51, 171174.
  • Ceriani R.M., Pierce S. & Cerabolini B. (2008) Are morpho-functional traits reliable indicators of inherent relative growth rate for prealpine calcareous grassland species? Plant Biosystems 142, 6065.
  • Cheng W., Sakai H., Yagi K. & Hasegawa T. (2009) Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology 149, 5158.
  • De Groot C.C., Van den Boogaard R., Marcelis L.F.M., Harbinson J. & Lambers H. (2003) Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation. Journal of Experimental Botany 54, 19571967.
  • De Pury D. & Farquhar G.D. (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell & Environment 20, 537557.
  • De Veylder L., Beeckman T. & Inzé D. (2007) The ins and outs of the plant cell cycle. Nature Reviews 8, 655665.
  • De Wit C.T. & Brouwer R. (1968) Über ein dynamisches Modell des vegetativen Wachstums von Pflanzenbestanden. Angewandte Botanik 42, 112.
  • De Wit M., Kegge W., Evers J.B., Vergeer-van Eijk M.H., Gankema P., Voesenek L.A.C. & Pierik R. (2012) Plant neighbor detection through touching leaf tips precedes phytochrome signals. Proceedings of the National Academy of Sciences of the United States of America 109, 1470514710.
  • DeJong T.M., Da Silva D., Vos J. & Escobar-Gutierrez A.J. (2011) Using functional–structural plant models to study, understand and integrate plant development and ecophysiology. Annals of Botany 108, 987989.
  • Dewar R.C., Franklin O., Mäkelä A., McMurtrie R.E. & Valentine H.T. (2009) Optimal function explains forest responses to global change. Bioscience 59, 127139.
  • Dourado-Neto D., Teruel D.A., Reichardt K., Nielsen D.R., Frizzone J.A. & Bacchi O.O.S. (1998) Principles of crop modeling and simulation: I. Uses of mathematical models in agricultural science. Scientia Agricola 55, 4650.
  • Eagles C.F. & Ostgard O. (1971) Variation in growth and development in natural populations of Dactylis glomerata from Norway and Portugal. I. Growth analysis. Journal of Applied Ecology 8, 367381.
  • Equiza M.A., Miravé J.P. & Tognetti J.A. (1997) Differential inhibition of shoot vs. root growth at low temperature and its relationship with carbohydrate accumulation in different wheat cultivars. Annals of Botany 80, 657663.
  • Evans G.C. (1972) The Quantitative Analysis of Plant Growth. Blackwell Scientific Publications, Oxford.
  • Evans J.R. (1996) Developmental constraints on photosynthesis: effects of light and nutrition. In Photosynthesis and the Environment (ed. N.R. Baker ), pp. 281304. Kluwer, Dordrecht.
  • Evans J.R. & Poorter H. (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment 24, 755767.
  • Evers J.B., Van der Krol A.R., Vos J. & Struik P.C. (2011) Understanding shoot branching by modelling form and function. Trends in Plant Science 16, 464467.
  • Falster D.S. & Westoby M. (2003) Plant height and evolutionary games. Trends in Ecology and Evolution 18, 337- 343.
  • Farooq M., Wahid A., Kobayashi N., Fujita D. & Basra S.M.A. (2009) Plant Drought Stress: Effects, Mechanisms and Management. In: Sustainable Agriculture. E. Lichtfouse , M. Navarette , P. Debaeke , S. Véronique & C. Alberola ), pp. 153188. Springer, Dordrecht.
  • Farrar J.F. (1993) Sink strength: what is it and how do we measure it? A summary. Plant, Cell & Environment 16, 10451046.
  • Field C. (1983) Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia 56, 341347.
  • Génard M., Bertin N., Gautier H., Lescourret F. & Quilot B. (2010) Virtual profiling: a new way to analyse phenotypes. The Plant Journal 62, 344355.
  • Gent M.P. (1986) Carbohydrate level and growth of tomato plants II. The effect of irradiance and temperature. Plant Physiology 81, 10751079.
  • Gent M.P.N. & Seginer I. (2012) A carbohydrate supply and demand model of vegetative growth: response to temperature and light. Plant, Cell & Environment 35, 12741286.
  • Gersani M., O'Brien E.E., Maina G.M. & Abramsky Z. (2001) Tragedy of the commons as a result of root competition. Journal of Ecology 89, 660669.
  • Gifford R.M. & Evans L.T. (1981) Photosynthesis, carbon partitioning, and yield. Annual Review of Plant Physiology 32, 485509.
  • Givnish T.J. (1982) On the adaptive significance of leaf height in forest herbs. American Naturalist 120, 353381.
  • Goudriaan J. (1996) Predicting crop yields under global change. In Global Change and Terrestrial Ecosystems (ed. B.H. Walker & W. Steffen ), pp. 260274. International Geosphere-Biosphere Programme Book, Cambridge University Press, Cambridge, UK.
  • Goudriaan J. & Monteith J.L. (1990) A mathematical function for crop growth based on light interception and leaf area expansion. Annals of Botany 66, 695701.
  • Goudriaan J. & Van Laar H.H. (1994) Modelling Potential Crop Growth Processes: Textbook with Exercises (Vol. 2). Springer, Berlin.
  • Hammer G.L., Sinclair T.R., Chapman S.C. & Van Oosterom E. (2004) On systems thinking, systems biology, and the in silico plant. Plant Physiology 134, 909911.
  • Hammer G.L., Dong Z., McLean G., Doherty A., Messina C., Schussler J., Zinselmeier C., Paszkiewicz S. & Cooper M. (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Science 49, 299312.
  • Haxeltine A. & Prentice I.C. (1996) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles 10, 693709.
  • Hikosaka K. & Anten N.P.R. (2012) An evolutionary game of leaf dynamics and its consequences for canopy structure. Functional Ecology 26, 10241032.
  • Hikosaka K. & Hirose T. (1997) Leaf angle as a strategy for light competition: optimal and evolutionarily stable light-extinction coefficient within a leaf canopy. Ecoscience 4, 501507.
  • Hummel I., Pantin F., Sulpice R., et al. (2010) Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiology 154, 357372.
  • Jamieson P.D., Porter J.R., Goudriaan J., Ritchie J.T., Van Keulen H. & Stol W. (1998) A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought. Field Crops Research 55, 2344.
  • Jeudy C., Ruffel S., Freixes S., et al. (2010) Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses. New Phytologist 185, 817828.
  • Jones J.W., Hoogenboom G., Porter C.H., Boote K.J., Batchelor W.D., Hunt L.A., Wilkens P.W., Singh U., Gijsman A.J. & Ritchie J.T. (2003) The DSSAT cropping system model. European Journal of Agronomy 18, 235265.
  • Jullien A., Mathieu A., Allirand J.M., Pinet A., De Reffye P., Cournède P.H. & Ney B. (2011) Characterization of the interactions between architecture and source–sink relationships in winter oilseed rape (Brassica napus) using the GreenLab model. Annals of Botany 107, 765779.
  • Katari M.S., Nowicki S.D., Aceituno F.F., et al. (2010) VirtualPlant: a software platform to support systems biology research. Plant Physiology 152, 500515.
  • Kergoat L., Lafont S., Arneth A., Le Dantec V. & Saugier B. (2008) Nitrogen controls plant canopy light-use efficiency in temperate and boreal ecosystems. Journal of Geophysical Research 113, 119.
  • Körner C. (2003) Carbon limitation in trees. Journal of Ecology 91, 417.
  • Körner C.H. (1991) Some often overlooked plant characteristics as determinants of plant growth: a reconsideration. Functional Ecology 5, 162173.
  • Krapp A. & Stitt M. (1995) An evaluation of direct and indirect mechanisms for the ‘sink-regulation’ of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. Planta 195, 313323.
  • Lacointe A. & Minchin P.E. (2008) Modelling phloem and xylem transport within a complex architecture. Functional Plant Biology 35, 772780.
  • Lambers H. & Poorter H. (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research 23, 187261.
  • Le Roux X., Lacointe A., Escobar-Gutiérrez A. & Le Dizès S. (2001) Carbon-based models of individual tree growth: a critical appraisal. Annals of Forest Science 58, 469506.
  • Leuning R. (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell & Environment 18, 339355.
  • Lloyd J. & Farquhar G.D. (1996) The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. I. General principles and forest ecosystems. Functional Ecology 10, 432.
  • Lo Y.H., Blanco J.A., Kimmins J.P., Seely B. & Welham C. (2011) Linking climate change and forest ecophysiology to project future trends in tree growth: a review of forest models. In Climate Change - Research and Technology for Adaptation and Mitigation (ed. J. Blanco ), pp. 6486. Intech, Rijeka, Croatia.
  • Long S.P., Zhu X.-G., Naidu A.L. & Ort D.R. (2006) Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment 29, 315330.
  • Lucas M., Laplaze L. & Bennett M.J. (2011) Plant systems biology: network matters. Plant, Cell & Environment 34, 535553.
  • Ludwig L.J., Charles-Edwards D.A. & Withers A.C. (1975) Tomato leaf photosynthesis and respiration in various light and carbon dioxide environments. In Environmental and Biological Control of Photosynthesis (ed. R. Marcelle ), pp. 2936. The Hague, Junk.
  • Lynch J.P. (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiology 156, 10411049.
  • Mäkelä A., Landsberg J., Ek A.R., Burk T.E., Ter-Mikaelian M., Ågren G.I., Oliver C.D. & Puttonen P. (2000) Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiology 20, 289298.
  • Marcelis L.F.M. & Gijzen H. (1998) Evaluation under commercial conditions of a model of prediction of the yield and quality of cucumber fruits. Scientia Horticulturae 76, 171181.
  • Marcelis L.F.M. & Heuvelink E. (2007) Concepts of modelling carbon allocation among plant organs. In Functional Structural Plant Modelling in Crop Production (eds J. Vos , L.F.M. Marcelis , P.H.B. de Visser , P.C. Struik & J.B. Evers ), pp. 103111. Springer, Dordrecht.
  • Marcelis L.F.M., Heuvelink E. & Goudriaan J. (1998) Modelling biomass production and yield of horticultural crops: a review. Scientia Horticulturae 74, 83111.
  • Marcelis L.F.M., Heuvelink E., Baan Hofman-Eijer L.R., Den Bakker J. & Xue L.B. (2004) Flower and fruit abortion in sweet pepper in relation to source and sink strength. Journal of Experimental Botany 55, 22612268.
  • Marcelis L.F.M., Elings A. & de Visser P.H.B. & Heuvelink E. (2009) Simulating growth and development of tomato crop. Acta Horticulturae 821, 101110.
  • Mathieu A., Cournède P.H., Barthélémy D. & de Reffye P. (2008) Rhythms and alternating patterns in plants as emergent properties of a model of interaction between development and functioning. Annals of Botany 101, 12331242.
  • Medlyn B.E., Badeck F.W., De Pury D., et al. (1999) Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell & Environment 22, 14751495.
  • Medlyn B.E., Duursma R.A. & Zeppel M.J.B. (2011) Forest productivity under climate change: a checklist for evaluating model studies. Climate Change 2, 332355.
  • Mitscherlich E. (1909) Das Gesetz des Minimum, das Gesetz des Abnemhmenden Bodenertages. Landwirtschaftliches Jahrbuch 38, 537552.
  • Moles A.T., Ackerly D.D., Tweddle J.C., Dickie J.B., Smith R., Leishman M.R., Mayfield M.M., Pitman A., Wood J.T. & Westoby M. (2007) Global patterns in seed size. Global Ecology and Biogeography 16, 109116.
  • Monteith J.L. (1977) Climate and the efficiency of crop production in Britain. Philosophical Transactions Royal Society London B. 281, 277294.
  • Monteith J.L. (1994) Validity of the correlation between intercepted radiation and biomass. Agricultural & Forest Meteorology 68, 213220.
  • Muller B., Pantin F., Génard M., Turc O., Freixes S., Piques M. & Gibon Y. (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany 62, 17151729.
  • Müller J., Wernecke P. & Diepenbrock W. (2005) LEAFC3-N: a nitrogen-sensitive extension of the CO2 and H2O gas exchange model LEAFC3 parameterised and tested for winter wheat (Triticum aestivum L.). Ecological Modelling 183, 183210.
  • Nagai T. & Makino A. (2009) Differences between rice and wheat in temperature responses of photosynthesis and plant growth. Plant and Cell Physiology 50, 744755.
  • Niinemets Ü. & Tenhunen J.D. (1997) A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant, Cell & Environment 20, 845866.
  • Noble D. (2012) A biological relativity view of the relationships between genomes and phenotypes. Progress in Biophysics and Molecular Biology (in press). http://dx.doi.org//10.1016/j.pbiomolbio.2012.09.004">10.1016/j.pbiomolbio.2012.09.004.
  • Palosuo T., Kersebaum K.C., Angulo C., Hlavinka P., Moriondo M., Olesen J.E., et al. (2011) Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. European Journal of Agronomy 35, 103114.
  • Patrick J.W. (1988) Assimilate partitioning in relation to crop productivity. HortScience 23, 3340.
  • Paul M.J. & Foyer C.H. (2001) Sink regulation of photosynthesis. Journal of Experimental Botany 52, 13831400.
  • Pearcy R.W. & Yang W. (1996) A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants. Oecologia 108, 112.
  • Poorter H. (1998) Do slow-growing species and nutrient-stressed plants respond relatively strongly to elevated CO2 ? Global Change Biology 4, 693697.
  • Poorter H. (2002) Plant growth and carbon economy. In Encyclopedia of Life Sciences. John Wiley & Sons, doi: 10.1038/npg.els.0003200
  • Poorter H. & Bergkotte M. (1992) Chemical composition of 24 wild species differing in relative growth rate. Plant, Cell & Environment 15, 221229.
  • Poorter H. & Evans J.R. (1998) Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 116, 2637.
  • Poorter H. & Navas M.L. (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist 157, 175198.
  • Poorter H. & Remkes C. (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83, 553559.
  • Poorter H. & Van der Werf A. (1998) Is inherent variation in RGR determined by LAR at low irradiance and by NAR at high irradiance? A review of herbaceous species. In Inherent Variation in Plant Growth. Physiological Mechanisms and Ecological Consequences (eds H. Lambers , H. Poorter & M.M.I. van Vuuren ), pp. 309336. Backhuys Publishers, Leiden.
  • Poorter H. & Villar R. (1997) The fate of acquired carbon in plants: chemical composition and construction costs. In Plant Resource Allocation (eds F.A. Bazzaz & J. Grace ), pp. 3972. Academic Press, London.
  • Poorter H., Remkes C. & Lambers H. (1990) Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiology 94, 621627.
  • Poorter H., Van de Vijver C.A.D.M., Boot R.G.A. & Lambers H. (1995) Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on nitrate supply. Plant & Soil 171, 217227.
  • Poorter H., van Rijn C.P.E., Vanhala T.K., Verhoeven K.J.F., de Jong Y.E.M., Stam P. & Lambers H. (2005) A genetic analysis of relative growth rate and underlying components in Hordeum spontaneum. Oecologia 142, 360377.
  • Poorter H., Niinemets Ü., Poorter L., Wright I.J. & Villar R. (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182, 565588.
  • Poorter H., Niinemets Ü., Walter A., Fiorani F. & Schurr U. (2010) A method to construct dose–response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. Journal of Experimental Botany 61, 20432055.
  • Poorter H., Niklas K.J., Reich P.B., Oleksyn J., Poot P. & Mommer L. (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193, 3050.
  • Porter J.R., Jamieson P.D. & Wilson D.R. (1993) Comparison of the wheat simulation models AFRCWHEAT2, CERES-Wheat and SWHEAT for non-limiting conditions of crop growth. Field Crops Research 33, 131157.
  • Quereix A., Dewar R.C., Gaudillere J.P., Dayau S. & Valancogne C. (2001) Sink feedback regulation of photosynthesis in vines: measurements and a model. Journal of Experimental Botany 52, 23132322.
  • Renton M. & Poorter H. (2011) Using log-log scaling slope analysis for determining the contributions to variability in biological variables such as leaf mass per area (LMA): why it works, when it works and how it can be extended. New Phytologist 190, 58.
  • Rogers A., Fischer B.U., Bryant J., Frehner M., Blum H., Raines C.A. & Long S.P. (1998) Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Plant Physiology 118, 683689.
  • Rötter R.P., Palosuo T., Kersebaum K.C., et al. (2012) Simulation of spring barley yield in different climatic zones of Northern and Central Europe: a comparison of nine crop models. Field Crops Research 133, 2336.
  • Rubio G., Walk T., Ge Z., Yan X., Liao H. & Lynch J.P. (2001) Root gravitropism and below-ground competition among neighbouring plants: a modelling approach. Annals of Botany 88, 929940.
  • Schieving F. & Poorter H. (1999) Carbon gain in a multispecies canopy: the role of specific leaf area and photosynthetic nitrogen-use efficiency in the tragedy of the commons. New Phytologist 143, 201211.
  • Sinclair T.T. & Purcell L.C. (2005) Is a physiological perspective relevant in a ‘genocentric’ age? Journal of Experimental Botany 56, 27772782.
  • Spitters C.J.T. (1990) On descriptive and mechanistic models for inter-plant competition, with particular reference to crop-weed interaction. In Theoretical Production Ecology: Reflections and Prospects (eds R. Rabbinge , J. Goudriaan , H. Van Keulen , F.W.T. Penning de Vries & H.H. van Laar ), pp. 217236. Backhuys Publishers, Leiden.
  • Stiling P. & Cornelissen T. (2007) How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology 13, 18231842.
  • Stitt M. & Schulze D. (1994) Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant, Cell & Environment 17, 465487.
  • Stitt M. & Zeeman S.C. (2012) Starch turnover: pathways, regulation and role in growth. Current Opinion in Plant Biology 15, 282292.
  • Sulpice R., Pyl E.T., Ishihara H., et al. (2009) Starch as a major integrator in the regulation of plant growth. Proceedings of the National Academy of Sciences of the United States of America 106, 1034810353.
  • Tholen D., Voesenek L.A.C. & Poorter H. (2004) Ethylene insensitivity does not increase leaf area or relative growth rate in Arabidopsis, Nicotiana tabacum, and Petunia x hybrid. Plant Physiology 134, 18031812.
  • Thornley J.H. (1995) Shoot:root allocation with respect to C, N and P: an investigation and comparison of resistance and teleonomic models. Annals of Botany 75, 391405.
  • Van Bodegom P.M., Douma J.C., Witte J.P.M., Ordoñez J.C., Bartholomeus R.P. & Aerts R. (2012) Going beyond limitations of plant functional types when predicting global ecosystem–atmosphere fluxes: exploring the merits of traits-based approaches. Global Ecology and Biogeography 21, 625636.
  • Van Oosten J.J. & Besford R.T. (1995) Some relationships between the gas exchange, biochemistry and molecular biology of photosynthesis during leaf development of tomato plants after transfer to different carbon dioxide concentrations. Plant, Cell & Environment 18, 12531266.
  • Villar R., Marañón T., Quero J.L., Panadero P., Arenas F. & Lambers H. (2005) Variation in relative growth rate of 20 Aegilops species (Poaceae) in the field: the importance of net assimilation rate or specific leaf area depends on the time scale. Plant & Soil 272, 1127.
  • Vos J., Marcelis L.F.M. & Evers J.B. (2007) Functional-structural plant modelling in crop production: adding a dimension. Frontis 22, 112.
  • Weiner J. (1990) Asymmetric competition in plant populations. Trends in Ecology & Evolution 5, 360364.
  • Wright I.J., Reich P.B., Westoby M., et al. (2004) The worldwide leaf economics spectrum. Nature 428, 821827.
  • Wullschleger S.D., Davis E.B., Borsuk M.E., Gunderson C.A. & Lynd L.R. (2010) Biomass production in switchgrass across the United States: database description and determinants of yield. Agronomy Journal 102, 11581168.
  • Yang Z. & Midmore D.J. (2009) Self-organisation at the whole-plant level: a modelling study. Functional Plant Biology 36, 5665.
  • Yin X. & Struik P.C. (2010) Modelling the crop: from system dynamics to systems biology. Journal of Experimental Botany 61, 21712183.
  • Yin X., Goudriaan J., Lantinga E.A., Vos J. & Spiertz H.J. (2003) A flexible sigmoid function of determinate growth. Annals of Botany 91, 361371.
  • Yuan W., Liu S., Zhoua G., et al. (2007) Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural Forest Meteorology 143, 189207.
  • Zhang D.Y., Sun G.J. & Jiang X.H. (1999) Donald's ideotype and growth redundancy: a game theoretical analysis. Field Crops Research 61, 179187.
  • Zhao K., Tung C.W., Eizenga G.C., et al. (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications 2, #467.
  • Zhu X.G., De Sturler E. & Long S.P. (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiology 145, 513526.
  • Zhu X.G., Long S.P. & Ort D.R. (2010) Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology 61, 235261.
  • Zuidema P.A., Leffelaar P.A., Gerritsma W., Mommer L. & Anten N.P. (2005) A physiological production model for cocoa (Theobroma cacao): model presentation, validation and application. Agricultural Systems 84, 195225.