Direct and indirect chemical defences against insects in a multitrophic framework



Plant secondary metabolites play an important role in mediating interactions with insect herbivores and their natural enemies. Metabolites stored in plant tissues are usually investigated in relation to herbivore behaviour and performance (direct defence), whereas volatile metabolites are often studied in relation to natural enemy attraction (indirect defence). However, so-called direct and indirect defences may also affect the behaviour and performance of the herbivore's natural enemies and the natural enemy's prey or hosts, respectively. This suggests that the distinction between these defence strategies may not be as black and white as is often portrayed in the literature. The ecological costs associated with direct and indirect chemical defence are often poorly understood. Chemical defence traits are often studied in two-species interactions in highly simplified experiments. However, in nature, plants and insects are often engaged in mutualistic interactions with microbes that may also affect plant secondary chemistry. Moreover, plants are challenged by threats above- and belowground and herbivory may have consequences for plant–insect multitrophic interactions in the alternative compartment mediated by changes in plant secondary chemistry. These additional associations further increase the complexity of interaction networks. Consequently, the effect of a putative defence trait may be under- or overestimated when other interactions are not considered.