SEARCH

SEARCH BY CITATION

References

  • d'Adda di Fagagna, F. (2008). Living on a break: cellular senescence as a DNA-damage response. Nat. Rev. Cancer 8, 512522.
  • Alonso, S.R., Ortiz, P., Pollan, M. et al. (2004). Progression in cutaneous malignant melanoma is associated with distinct expression profiles – a tissue microarray-based study. Am. J. Pathol. 164, 193203.
  • Anders, L., Ke, N., Hydbring, P. et al. (2011). A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 20, 620634.
  • Artandi, S.E., and DePinho, R.A. (2010). Telomeres and telomerase in cancer. Carcinogenesis 31, 918.
  • Baird, D.M., Rowson, J., Wynford-Thomas, D., and Kipling, D. (2003). Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat. Genet. 33, 203207.
  • Bandyopadhyay, D., Timchenko, N., Suwa, T., Hornsby, P.J., Campisi, J., and Medrano, E.E. (2001). The human melanocyte: a model system to study the complexity of cellular aging and transformation in non-fibroblastic cells. Exp. Gerontol. 36, 12651275.
  • Bartkova, J., Lukas, J., Guldberg, P., Alsner, J., Kirkin, A.F., Zeuthen, J., and Bartek, J. (1996). The p16-cyclin D/Cdk4-pRb pathway as a functional unit frequently altered in melanoma pathogenesis. Cancer Res. 56, 54755483.
  • Bataille, V., Kato, B.S., Falchi, M. et al. (2007). Nevus size and number are associated with telomere length and represent potential markers of a decreased senescence in vivo. Cancer Epidemiol. Biomarkers Prev. 16, 14991502.
  • Bennett, D.C. (2008). How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res. 21, 2738.
  • Bode, A.M., and Dong, Z.G. (2004). Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer 4, 793805.
  • Bond, J.A., Haughton, M.F., Rowson, J.M., Smith, P.J., Gire, V., Wynford-Thomas, D., and Wyllie, F.S. (1999). Control of replicative life span in human cells: barriers to clonal expansion intermediate between M1 senescence and M2 crisis. Mol. Cell. Biol. 19, 31033114.
  • Chehab, N.H., Malikzay, A., Appel, M., and Halazonetis, T.D. (2000). Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev. 14, 278288.
  • Chin, K., de Solorzano, C.O., Knowles, D. et al. (2004). In situ analyses of genome instability in breast cancer. Nat. Genet. 36, 984988.
  • Clark, W.H., Elder, D.E., Guerry, D., Braitman, L.E., Trock, B.J., Schultz, D., Synnestvedt, M., and Halpern, A.C. (1989). Model predicting survival in stage I melanoma based on tumor progression. J. Natl Cancer Inst. 81, 18931904.
  • Collado, M., and Serrano, M. (2010). Senescence in tumours: evidence from mice and humans. Nat. Rev. Cancer 10, 5157.
  • Gershenwald, J.E., Soong, S.J., Balch, C.M., and AJCC Melanoma Staging Committee (2010). 2010 TNM staging system for cutaneous melanoma… and beyond. Ann. Surg. Oncol. 17, 14751477.
  • Gisselsson, D., and Höglund, M. (2005). Connecting mitotic instability and chromosome aberrations in cancer–can telomeres bridge the gap? Semin. Cancer Biol. 15, 1323.
  • Gorgoulis, V.G., Vassiliou, L.V., Karakaidos, P. et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907913.
  • Gray-Schopfer, V.C., and Bennett, D.C. (2006). The genetics of melanoma. In The Pigmentary System. Physiology and Pathophysiology, J.J. Nordlund, R.E. Boissy, V.J. Hearing, R.A. King, W.S. Oetting, and J.P. Ortonne, eds, 2nd edn. (New York: Blackwell Publishing), pp. 472488.
  • Gray-Schopfer, V.C., Cheong, S.C., Chow, J., Moss, A., Abdel-Malek, Z.A., Marais, R., Wynford-Thomas, D., and Bennett, D.C. (2006). Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br. J. Cancer 95, 496505.
  • Ha, L., Ichikawa, T., Anver, M. et al. (2007). ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence. Proc. Natl Acad. Sci. USA 104, 1096810973.
  • Ha, L., Merlino, G., and Sviderskaya, E.V. (2008). Melanomagenesis: overcoming the barrier of melanocyte senescence. Cell Cycle 7, 19441948.
  • Haferkamp, S., Tran, S.L., Becker, T.M., Scurr, L.L., Kefford, R.F., and Rizos, H. (2009). The relative contributions of the p53 and pRb pathways in oncogene induced melanocyte senescence. Aging 1, 542556.
  • Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of Cancer: the Next Generation. Cell 144, 646674.
  • Herbig, U., and Sedivy, J.M. (2006). Regulation of growth arrest in senescence: telomere damage is not the end of the story. Mech. Ageing Dev. 127, 1624.
  • Hsu, M.-Y., Elder, D.E., and Herlyn, M. (2000). Melanoma: the Wistar melanoma (WM) cell lines. In Human Cell Culture, J.R.W. Masters, and B. Palsson, eds, vol. 3. (London: Kluwer Academic Publishers), pp. 259274.
  • Jacobs, J.J.L., and de Lange, T. (2005). p16INK4a as a second effector of the telomere damage pathway. Cell Cycle 4, 13641368.
  • Jung, Y.S., Qian, Y.J., and Chen, X.B. (2010). Examination of the expanding pathways for the regulation of p21 expression and activity. Cell. Signal. 22, 10031012.
  • Kang, T.W., Yevsa, T., Woller, N. et al. (2011). Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547551.
  • Kaufmann, W.K., Nevis, K.R., Qu, P. et al. (2008). Defective cell cycle checkpoint functions in melanoma are associated with altered patterns of gene expression. J. Invest. Dermatol. 128, 175187.
  • Keller-Melchior, R., Schmidt, R., and Piepkorn, M. (1998). Expression of the tumor suppressor gene product p16INK4 in benign and malignant melanocytic lesions. J. Invest. Dermatol. 110, 932938.
  • Kiyono, T., Foster, S.A., Koop, J.I., McDougall, J.K., Galloway, D.A., and Klingelhutz, A.J. (1998). Both RB/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 8488.
  • Lassam, N.J., From, L., and Kahn, H.J. (1993). Overexpression of p53 is a late event in the development of malignant melanoma. Cancer Res. 53, 22352238.
  • Lukas, C., Falck, J., Bartkova, J., Bartek, J., and Lukas, J. (2003). Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat. Cell Biol. 5, 255260.
  • Michaloglou, C., Vredeveld, L.C., Soengas, M.S., Denoyelle, C., Kuilman, T., van der Horst, C.M., Majoor, D.M., Shay, J.W., Mooi, W.J., and Peeper, D.S. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720724.
  • Molven, A., Grimstvedt, M.B., Steine, S.J., Harland, M., Avril, M.F., Hayward, N.K., and Akslen, L.A. (2005). A large Norwegian family with inherited malignant melanoma, multiple atypical nevi, and CDK4 mutation. Genes Chromosom. Cancer 44, 1018.
  • Mooi, W.J., and Krausz, T. (2007). Pathology of Melanocytic Disorders, 2nd edn. (London: Hodder Arnold).
  • Nalabothula, N., Chakravarty, D., Pierce, A., and Carrier, F. (2010). Over expression of nucleophosmin and nucleolin contributes to the suboptimal activation of a G2/M checkpoint in Ataxia Telangiectasia fibroblasts. Mol. Cell. Pharmacol. 2, 179189.
  • Passos, J.F., Nelson, G., Wang, C. et al. (2010). Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 6, 347.
  • Peeper, D.S. (2011). Oncogene-induced senescence and melanoma: where do we stand? Pigment Cell Melanoma Res. 24, 11071111.
  • Peters, G. (2008). Tumor suppression for ARFicionados: the relative contributions of p16INK4a and p14ARF in melanoma. J. Natl Cancer Inst. 100, 757795.
  • Siegel, S., and Castellan, N.J. (1998). Nonparametric Statistics for the Behavioural Sciences, 2nd edn. (London: McGraw Hill).
  • Sirigu, P., Piras, F., Minerba, L., Murtas, D., Maxia, C., Colombari, R., Corbu, A., Perra, M.T., and Ugalde, J. (2006). Prognostic prediction of the immunohistochemical expression of p16 and p53 in cutaneous melanoma: a comparison of two populations from different geographical regions. Eur. J. Histochem. 50, 191198.
  • Soo, J.K., MacKenzie Ross, A.D., Kallenberg, D.M. et al. (2011). Malignancy without immortality? Cellular immortalization as a possible late event in melanoma progression. Pigment Cell Melanoma Res. 24, 490503.
  • Stefanaki, C., Stefanaki, K., Antoniou, C., Argyrakos, T., Stratigos, A., Patereli, A., and Katsambas, A. (2008). G1 cell cycle regulators in congenital melanocytic nevi. Comparison with acquired nevi and melanomas. J. Cutan. Pathol. 35, 799808.
  • Sviderskaya, E.V., Hill, S.P., Evans-Whipp, T.J., Chin, L., Orlow, S.J., Easty, D.J., Cheong, S.C., Beach, D., DePinho, R.A., and Bennett, D.C. (2002). p16Ink4a in melanocyte senescence and differentiation. J. Natl Cancer Inst. 94, 446454.
  • Sviderskaya, E.V., Gray-Schopfer, V.C., Hill, S.P. et al. (2003). p16/cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis, and immortalization: possible implications for melanoma progression. J. Natl Cancer Inst. 95, 723732.
  • Talve, L., Sauroja, I., Collan, Y., Punnonen, K., and Ekfors, T. (1997). Loss of expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage. Int. J. Cancer 74, 255259.
  • Vredeveld, L.C., Possik, P.A., Meissl, K. et al. (2012). Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev. 26, 10551069.
  • van Vugt, M.A.T.M., and Medema, R.H. (2005). Getting in and out of mitosis with Polo-like kinase-1. Oncogene, 24, 28442859.
  • Wu, Y.L., Dudognon, C., Nguyen, E. et al. (2006). Immunodetection of human telomerase reverse-transcriptase (hTERT) re-appraised: nucleolin and telomerase cross paths. J. Cell Sci. 119, 27972806.
  • Yang, A., Shi, G., Zhou, C., Lu, R., Li, H., Sun, L., and Jin, Y. (2011). Nucleolin maintains embryonic stem cell self-renewal by suppression of p53 protein-dependent pathway. J. Biol. Chem. 286, 4337043382.
  • Zhu, G., Montgomery, G.W., James, M.R., Trent, J.M., Hayward, N.K., Martin, N.G., and Duffy, D.L. (2007). A genome-wide scan for naevus count: linkage to CDKN2A and to other chromosome regions. Eur. J. Hum. Genet. 15, 94102.