SEARCH

SEARCH BY CITATION

References

  • Abbas, M., Ali, M., Shah, S.K., D'Amico, F., Postorino, P., Mangialardo, S., Guidi, M.C., Cricenti, A., and Gunnella, R. (2011). Control of structural, electronic, and optical properties of eumelanin films by electrospray deposition. J. Phys. Chem. B 115, 11199.
  • Aroca, P., García-Borrón, J.C., Solano, F., and Lozano, J.A. (1990). Regulation of distal mammalian melanogenesis. I. Partial purification and characterization of a dopachrome converting factor: dopachrome tautomerase. Biochim. Biophys. Acta 1035, 266275.
  • Aroca, P., Solano, F., Salinas, C., Garcia-Borron, J.C., and Lozano, J.A. (1992). Regulation of the final phase of mammalian melanogenesis. The role of dopachrome tautomerase and the ratio between 5,6-dihydroxyindole-2-carboxylic acid and 5,6-dihydroxyindole. Eur. J. Biochem. 208, 155163.
  • Barsh, G.S. (2006). Regulation of pigment type switching by Agouti, melanocortin signalling, attractin, and mahoganoid. In The Pigmentary System. J. Nordlund, R. Boissy, V. Hearing, R. King, W. Oetting, and S.P. Ortonne, eds. (Oxford, UK: Blackwell), pp. 395409.
  • Bhatnagar, V., Anjaiah, S., Puri, N., Darshanam, B.N., and Ramaiah, A. (1993). pH of melanosomes of B 16 murine melanoma is acidic: its physiological importance in the regulation of melanin biosynthesis. Arch. Biochem. Biophys. 307, 183192.
  • Bothma, J.P., de Boor, J., Divakar, U., Schwenn, P., and Meredith, P. (2008). Device-quality electrically conducting melanin thin films. Adv. Mater. 20, 3539.
  • Briganti, S., Ale-Agha, N., Cardinali, G., Stahl, W., and Picardo, M. (2005). Involvement of pheomelanin in the integrity of gap junctions intercellular communication in cultured epidermal cells following UVA exposure. Pigment Cell Res. 18(Suppl. 1), 33.
  • Bush, W.D., Garguilo, J., Zucca, F.A., Albertini, A., Zecca, L., Edwards, G.S., Nemanich, R.J., and Simon, J.D. (2006). The surface oxidation potential of human neuromelanin reveals a spherical architecture with a pheomelanin core and a eumelanin surface. Proc. Natl Acad. Sci. USA 103, 1478514789.
  • Cánovas, F.G., García-Carmona, F., Sánchez, J.V., Pastor, J.L., and Teruel, J.A. (1982). The role of pH in the melanin biosynthesis pathway. J. Biol. Chem. 257, 87388744.
  • Casadevall, A., Rosas, A.L., and Nosanchuk, J.D. (2000). Melanin and virulence in Cryptococcus neoformans. Curr. Opin. Microbiol. 3, 354358.
  • Chedekel, M.R., Murr, B.L., and Zeise, L. (1992). Melanin standard method: empirical formula. Pigment Cell Res. 5, 143147.
  • Chioccara, F., and Novellino, E. (1986). A convenient one-step synthesis of 5-cystein-S-yldopa using ceric ammonium nitrate. Synth. Commun. 16, 967971.
  • Costin, G.E., Valencia, J.C., Vieira, W.D., Lamoreux, M.L., and Hearing, V.J. (2003). Tyrosinase processing and intracellular trafficking is disrupted in mouse primary melanocytes carrying the underwhite (uw) mutation. A model for oculocutaneous albinism (OCA) type 4. J. Cell Sci. 116, 32033212.
  • D'Acquisto, F., Carnuccio, R., d'Ischia, M., and Misuraca, G. (1995). 5,6-Dihydroxyindole-2 carboxylic acid, a diffusible melanin precursor, is a potent stimulator of lipopolysaccharide-induced production of nitric oxide by J774 macrophages. Life Sci. 57, 401406.
  • Della Vecchia, N.F., Avolio, R., Alfè, M., Errico, M.E., Napolitano, A., and d'Ischia, M. (2013). Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Adv. Funct. Mater. 23, 13311340.
  • Enochs, W.S., Nilges, M.J., and Swartz, H.M. (1993). A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy. Pigment Cell Res. 6, 9199.
  • von Erlenmeyer, H., Junod, J., Guex, W., and Erne, M. (1948). Über carbonsäuren des thiazols. Helv. Chim. Acta 31, 13421349.
  • Fedorow, H., Pickford, R., Hook, J.M., Double, K.L., Halliday, G.M., Gerlach, M., Riederer, P., and Garner, B. (2005). Dolichol is the major lipid component of human substantia nigra neuromelanin. J. Neurochem. 92, 990995.
  • Felix, C.C., Hyde, J.S., Sarna, T., and Sealy, R.C. (1978). Interactions of melanin with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals. J. Am. Chem. Soc. 100, 39223926.
  • Flurkey, A., Cooksey, J., Reddy, A., Spoonmore, K., Rescigno, A., Inlow, J., and Flurkey, W.H. (2008). Enzyme, protein, carbohydrate, and phenolic contaminants in commercial tyrosinase preparations: potential problems affecting tyrosinase activity and inhibition studies. J. Agric. Food Chem. 56, 47604768.
  • Fujita, K., Ito, S., Inoue, S., Yamamoto, Y., Takeuchi, J., Shamoto, M., and Nagatsu, T. (1980). Selective toxicity of 5-S-cysteinyldopa, a melanin precursor, to tumor cells in vitro and in vivo. Cancer Res. 40, 25432546.
  • Fuller, B.B., Spaulding, D.T., and Smith, D.R. (2001). Regulation of the catalytic activity of preexisting tyrosinase in black and Caucasian human melanocyte cell cultures. Exp. Cell Res. 262, 197208.
  • Furumura, M., Solano, F., Matsunaga, N., Sakai, C., Spritz, R.A., and Hearing, V.J. (1998). Metal ligand-binding specificities of the tyrosinase-related proteins. Biochem. Biophys. Res. Commun. 242, 579585.
  • Garcia-Borron, J.C., Solano, F., Iborra, J.L., and Lozano, J.A. (1985). Aggregation equilibria of tyrosinases of Harding-Passey mouse melanoma. Biochem. J. 228, 95101.
  • Giordano, F., Bonetti, C., Surace, E.M., Marigo, V., and Raposo, G. (2009). The ocular albinism type 1 (OA1) G-protein-coupled receptor functions with MART-1 at early stages of melanogenesis to control melanosome identity and composition. Hum. Mol. Genet. 18, 45304545.
  • Greco, G., Wakamatsu, K., Panzella, L., Ito, S., Napolitano, A., and d'Ischia, M. (2009). Isomeric cysteinyldopas provide a (photo)degradable bulk component and a robust structural element in red human hair pheomelanin. Pigment Cell Melanoma Res. 22, 319327.
  • Greco, G., Panzella, L., Verotta, L., d'Ischia, M., and Napolitano, A. (2011). Uncovering the structure of human red hair pheomelanin:benzothiazolylthiazinodihydroisoquinolines as key building blocks. J. Nat. Prod. 74, 675682.
  • Greco, G., Panzella, L., Napolitano, A., and d'Ischia, M. (2012). The fundamental building blocks of red human hair pheomelanin are isoquinoline-containing dimers. Pigment Cell Melanoma Res. 25, 110112.
  • Haywood, R.M., Lee, M., and Linge, C. (2006). Synthetic melanin is a model for soluble natural eumelanin in UVA-photosensitised superoxide production. J. Photochem. Photobiol. B 82, 224235.
  • Hearing, V.J., and Ekel, T.M. (1976). Mammalian tyrosinase. A comparison of tyrosine hydroxylation and melanin formation. Biochem. J. 157, 549557.
  • Hearing, V.J., Nicholson, J.M., Montague, P.M., Ekel, T.M., and Tomecki, K.J. (1978). Mammalian tyrosinase. Structural and functional interrelationship of isozymes. Biochim. Biophys. Acta 522, 327339.
  • Heiduschka, P., Blitgen-Heinecke, P., Tura, A., Kokkinou, D., Julien, S., Hofmeister, S., Bartz-Schmidt, K.U., and Schraermeyer, U. (2007). Melanin precursor 5,6-dihydroxyindol: protective effects and cytotoxicity on retinal cells in vitro and in vivo. Toxicol. Pathol. 35, 10301038.
  • Hoashi, T., Muller, J., Vieira, W.D., Rouzaud, F., Kikuchi, K., Tamaki, K., and Hearing, V.J. (2006). The repeat domain of the melanosomal matrix protein PMEL17/GP100 is required for the formation of organellar fibers. J. Biol. Chem. 281, 2119821208.
  • d'Ischia, M., Napolitano, A., Pezzella, A., Land, E.J., Ramsden, C.A., and Riley, P.A. (2005). 5,6-Dihydroxyindoles and indole-5,6-diones. Adv. Heterocycl. Chem. 89, 163.
  • d'Ischia, M., Napolitano, A., Pezzella, A., Sarna, T., and Meredith, P. (2009). Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials. Ang. Chem. Int. Ed. 48, 39143921.
  • Ito, S. (1983). One-step synthesis of 2-(amino-2-carboxyethylthio)dopas (Cys-dopas) from dopa and cysteine by hydrogen peroxide in the presence of iron-EDTA complex. Bull. Chem. Soc. Jpn. 56, 365366.
  • Ito, S. (1986). Reexamination of the structure of eumelanin. Biochim. Biophys. Acta 883, 155161.
  • Ito, S. (1989). Optimization of conditions for preparing synthetic pheomelanins. Pigment Cell Res. 883, 155161.
  • Ito, S., and Fujita, K. (1985). Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography. Anal. Biochem. 144, 527536.
  • Ito, S., and Prota, G. (1977). A facile one-step synthesis of cysteinyldopas using mushroom tyrosinase. Experientia 33, 11181119.
  • Ito, S., and Wakamatsu, K. (1998). Chemical degradation of melanins: application to identification of dopamine-melanin. Pigment Cell Res. 11, 120126.
  • Ito, S., and Wakamatsu, K. (2003). Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res. 16, 523531.
  • Ito, S., and Wakamatsu, K. (2011). Human hair melanins: what we have learned and have not learned from mouse coat color pigmentation. Pigment Cell Melanoma Res. 24, 6374.
  • Ito, S., Inoue, S., and Fujita, K. (1983). The mechanism of toxicity of 5-S-cysteinyldopa to tumour cells. Hydrogen peroxide as a mediator of cytotoxicity. Biochem. Pharmacol. 32, 20792083.
  • Ito, S., Fujita, K., Yoshioka, M., Sienko, D., and Nagatsu, T. (1986). Identification of 5-S- and 2-S-cysteinyldopamine and 5-S-glutathionyldopamine formed from dopamine by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. 375, 134140.
  • Ito, S., Wakamatsu, K., d'Ischia, M., Napolitano, A., and Pezzella, A. (2011a). Structure of melanins. In Melanins and Melanosomes: Biosynthesis, Biogenesis, Physiological, and Pathological Functions, P.A. Riley, and J. Borovansky, eds. Ch. 6. (Germany: Wiley-VCH), pp. 167185.
  • Ito, S., Nakanishi, Y., Valenzuela, R.K., Brilliant, M.H., Kolbe, L., and Wakamatsu, K. (2011b). Usefulness of alkaline hydrogen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples: application to chemical analysis of human hair melanins. Pigment Cell Melanoma Res. 24, 605613.
  • Ito, S., Wakamatsu, K., Glass, K., and Simon, J.D. (2013a). High-performance liquid chromatography estimation of cross-linking of dihydroxyindole moiety in eumelanin. Anal. Biochem. 434, 221225.
  • Ito, S., Pilat, A., Gerwat, W. et al. (2013b). Photoaging of human retinal pigment epithelium is accompanied by oxidative modifications of its eumelanin. Pigment Cell Melanoma Res. 26, 357366.
  • Jastrzebska, M.M., Jussila, S., and Isotalo, H. (1998). Dielectric response and ac conductivity of synthetic dopa-melanin polymer. J. Mat. Sci. 33, 40234028.
  • Jimbow, K., Miyake, Y., Homma, K., Yasuda, K., Izumi, Y., Tsutsumi, A., and Ito, S. (1984). Characterization of melanogenesis and morphogenesis of melanosomes by physicochemical properties of melanin and melanosomes in malignant melanoma. Cancer Res. 44, 11281134.
  • Jiménez-Cervantes, C., Solano, F., Kobayashi, T., Urabe, K., Hearing, V., Lozano, J.A., and García-Borrón, J.C. (1994). A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase related protein-1. J. Biol. Chem. 269, 1799318001.
  • Jiménez-Cervantes, C., García-Borrón, J.C., Lozano, J.A., and Solano, F. (1995). Effect of detergents and endogenous lipids on the activity and some physicochemical properties of tyrosinase and its related proteins. Biochim. Biophys. Acta 1243, 421430.
  • Kipp, C., and Young, A.R. (1999). The soluble eumelanin precursor 5,6-dihydroxyindole-2 carboxylic acid enhances oxidative damage in human keratinocyte DNA after UVA irradiation. Photochem. Photobiol. 70, 191198.
  • Kobayashi, T., Urabe, K., Winder, A., Jiménez-Cervantes, C., Imokawa, G., Brewington, T., Solano, F., García-Borrón, J.C., and Hearing, V.J. (1994). Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J. 13, 58185825.
  • Koch, W.H., and Chedekel, M.R. (1987). Photochemistry and photobiology of melanogenic metabolites: formation of free radicals. Photochem. Photobiol. 46, 229238.
  • Korner, A., and Pawelek, J. (1980). Dopachrome conversion: a possible regulatory point in melanin biosynthesis. J. Invest. Dermatol. 75, 192195.
  • Kovacs, D., Flori, E., Maresca, V., Ottaviani, M., Aspite, N., Dell'Anna, M.L., Panzella, L., Napolitano, A., Picardo, M., and d'Ischia, M. (2012). The eumelanin intermediate 5,6-dihydroxyindole-2-carboxylic acid is a messenger in the cross-talk among epidermal cells. J. Invest. Dermatol. 132, 11961205.
  • Kushimoto, T., Basrur, V., Valencia, J., Matsunaga, J., Vieira, W.D., Ferrans, V.J., Muller, J., Appella, E., and Hearing, V.J. (2001). A model for melanosome biogenesis based on the purification and analysis of early melanosomes. Proc. Natl Acad. Sci. USA 98, 1069810703.
  • Land, E.J., Ramsden, C.A., and Riley, P.A. (2007). The mechanism of suicide-inactivation of tyrosinase: a substrate structure investigation. Tohoku J. Exp. Med. 212, 341348.
  • Lee, H., Dellatore, S.M., Miller, W.M., and Messersmith, P.B. (2007). Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426430.
  • Liu, Y., and Simon, J.D. (2003). The effect of preparation procedures on the morphology of melanin from the ink sac of Sepia officinalis. Pigment Cell Res. 16, 7280.
  • Liu, Y., and Simon, J.D. (2005). Metal-ion interactions and the structural organization of Sepia eumelanin. Pigment Cell Res. 18, 4248.
  • Liu, Y., Kempf, V.R., Nofsinger, J.B., Weinert, E.E., Rudnicki, M., Wakamatsu, K., Ito, S., and Simon, J.D. (2003). Comparison of the structural and physical properties of human hair eumelanin following enzymatic or acid/base extraction. Pigment Cell Res. 16, 355365.
  • Liu, Y., Hong, L., and Simon, J.D. (2005). Comparison of the structural and chemical properties of melanosomes isolated from retinal pigment epithelium, iris and choroids of newborn and mature bovine eyes. Pigment Cell Res. 81, 510516.
  • Maeda, K., and Hatao, M. (2004). Involvement of photooxidation of melanogenic precursors in prolonged pigmentation induced by ultraviolet A. J. Invest. Dermatol. 122, 503509.
  • Martinez, J.H., Solano, F., Garcia-Borron, J.C., Iborra, J.L., and Lozano, J.A. (1985). The involvement of histidine at the active site of Harding-Passey mouse melanoma tyrosinase. Biochem. Int. 11, 729738.
  • McGlinchey, R.P., Shewmaker, F., McPhie, P., Monterroso, B., Thurber, K., and Wickner, R.B. (2009). The repeat domain of the melanosome fibril protein Pmel17 forms the amyloid core promoting melanin synthesis. Proc. Natl Acad. Sci. USA 106, 1373113736.
  • Meredith, P., and Sarna, T. (2006). The physical and chemical properties of eumelanin. Pigment Cell Res. 19, 572594.
  • Meredith, P., Powell, B.J., Riesz, J., Nighswander-Rempel, S.P., Pederson, M.R., and Moore, E.G. (2006). Towards structure-property-function relationships for eumelanin. Soft Matter 2, 3744.
  • Mostert, A.B., Davy, K., Ruggles, J., Powell, B., Gentle, I., and Meredith, P. (2010). Gaseous adsorption in melanins: hydrophilic biomacromolecules with high electrical conductivities. Langmuir 26, 412.
  • Mostert, A.B., Powell, B.J., Pratt, F.L., Hanson, G.R., Sarna, T., Gentle, I.R., and Meredith, P. (2012a). Role of semiconductivity and ion transport in the electrical conduction of melanin. Proc. Natl. Acad. Sci. USA 109, 89438947.
  • Mostert, A.B., Powell, B.J., Gentle, I.R., and Meredith, P. (2012b). On the origin of electrical conductivity in the bio-electronic material melanin. Appl. Phys. Lett. 100, 093701.
  • Napolitano, A., Vincensi, M.R., d'Ischia, M., and Prota, G. (1996). A new benzothiazole derivative by degradation of pheomelanins with alkaline hydrogen peroxide. Tetrahedron Lett. 37, 67996802.
  • Napolitano, A., Vincensi, M.R., Di Donato, P., Monfrecola, G., and Prota, G. (2000). Microanalysis of melanins in mammalian hair by alkaline hydrogen peroxide degradation: identification of a new structural marker of pheomelanins. J. Invest. Dermatol. 114, 11411147.
  • Neeley, E., Fritch, G., Fuller, A., Wolfe, J., Wright, J., and Flurkey, W. (2009). Variations in IC(50) Values with purity of mushroom tyrosinase. Int. J. Mol. Sci. 10, 38113823.
  • Nicolaus, R.A. (1969). Melanins. (Paris: Hermann).
  • Novellino, L., Napolitano, A., and Prota, G. (2000). Isolation and characterization of mammalian eumelanins from hair and irides. Biochim. Biophys. Acta 1475, 295306.
  • Ohkura, T., Yamashita, K., Mishima, Y., and Kobata, A. (1984). Purification of hamster melanoma tyrosinases and structural studies of their asparagine-linked sugar chains. Arch. Biochem. Biophys. 235, 6367.
  • Olivares, C., Jimenez-Cervantes, C., Lozano, J.A., Solano, F., and Garcia-Borron, J.C. (2001). The 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase. Biochem. J. 354, 131139.
  • Palumbo, A., Solano, F., Misuraca, G., Aroca, P., Garcia-Borron, J.C., Lozano, J.A., and Prota, G. (1991). Comparative action of dopachrome tautomerase and metal ions on the rearrangement of dopachrome. Biochim. Biophys. Acta 1115, 15.
  • Panzella, L., Manini, P., Monfrecola, G., d'Ischia, M., and Napolitano, A. (2007a). An easy-to-run method for routine analysis of eumelanin and pheomelanin in pigmented tissues. Pigment Cell Melanoma Res. 20, 128133.
  • Panzella, L., De Lucia, M., Napolitano, A., and d'Ischia, M. (2007b). The first expedient entry to the human melanogen 2-S-cysteinyldopa exploiting the anomalous regioselectivity of 3,4-dihydroxycinnamic acid-thiol conjugation. Tetrahedron Lett. 48, 76507652.
  • Panzella, L., Szewczyk, G., d'Ischia, M., Napolitano, A., and Sarna, T. (2010). Zinc-induced structural effects enhance oxygen consumption and superoxide generation in synthetic pheomelanins on UVA/visible light irradiation. Photochem. Photobiol. 86, 757764.
  • Pawelek, J.M., and Lerner, A.B. (1978). 5,6-Dihydroxyindole is a melanin precursor showing potent cytotoxicity. Nature 276, 626628.
  • Pawelek, J., Wong, G., Sansone, M., and Morowitz, J. (1973). Molecular biology of pigment cells. Molecular controls in mammalian pigmentation. Yale J. Biol. Med. 46, 430443.
  • Pawelek, J., Korner, A., Bergstrom, A., and Bolognia, J. (1980). New regulators of melanin biosynthesis and the autodestruction of melanoma cells. Nature 286, 617619.
  • Peles, D.N., Hong, L., Hu, D.N., Ito, S., Nemanich, R.J., and Simon, J.D. (2009). Human iridal stroma melanosomes of varying pheomelanin contents possess a common eumelanic outer surface. J. Phys. Chem. B 113, 1134611351.
  • Pezzella, A., d'Ischia, M., Napolitano, A., Palumbo, A., and Prota, G. (1997). An integrated approach to the structure of Sepia melanin. Evidence for high proportion of degraded 5,6-dihydroxyindole-2-carboxylic acid units in the pigment backbone. Tetrahedron 53, 82818286.
  • Powell, M., and Rosenberg, B. (1970). Nature of the charge carriers in solvated biomacromolecules: DNA and water. Bioenergetics 9, 14031406.
  • Prota, G. (1992). Melanins and Melanogenesis. (San Diego, CA: Academic Press).
  • Prota, G. (1995). The chemistry of melanins and melanogenesis. Fortschr. Chem. Org. Naturst. 64, 93148.
  • Puri, N., Gardner, J.M., and Brilliant, M.H. (2000). Aberrant pH of melanosomes in pink-eyed dilution (p) mutant melanocytes. J. Invest. Dermatol. 115, 607613.
  • Riesz, J., Gilmore, J., and Meredith, P. (2005). Quantitative photoluminescence of broad band absorbing melanins: a procedure to correct for inner filter and re-absorption effects. Spectrochim. Acta A Mol. Biomol. Spectrosc. 16, 21532160.
  • Riesz, J., Gilmore, J., and Meredith, P. (2006). Quantitative scattering of melanin solutions. Biophys. J . 90, 18.
  • Sarna, T., and Plonka, P.M. (2005). Biophysical studies of melanin: paramagnetic, ion-exchange and redox properties of melanin pigments and their photoreactivity. In Biomedical ESR. Biological Magnetic Resonance Series. S.S. Eaton, G.R. Eaton, and L.J. Berliner, eds. (The Netherlands, New York, Boston: Kluwer Academic Publishers), pp. 125146.
  • Sarna, T., Hyde, J.S., and Swartz, H.M. (1976). Ion exchange in melanin: an electron spin resonance study with lanthanide probes. Science 192, 11321134.
  • Schmaler-Ripcke, J., Sugareva, V., Gebhardt, P., Winkler, R., Kniemeyer, O., Heinekamp, T., and Brakhage, A.A. (2009). Production of pyomelanin, a second type of melanin, via the tyrosine degradation. In Pathway in Aspergillus fumigatus. R.C. Sealy, C.C. Felix, J.S. Hyde, and H.M. Swartz, eds. Appl. Environ. Microbiol. 75, 493503.
  • Sealy, R.C., Felix, C.C., Hyde, J.S., and Swartz, H.M. (1980). Structure and reactivity of melanins: influence of free radicals and metal ions. In Free Radicals in Biology, W.A. Pryor, ed. Vol. 4. (New York, NY: Academic), pp. 209259.
  • Sealy, R.C., Hyde, J.S., Felix, C.C., Menon, I.A., Prota, G., Swartz, H.M., Persad, S., and Haberman, H.F. (1982). Novel free radicals in synthetic and natural pheomelanins: distinction between dopa melanins and cysteinyldopa melanins by ESR spectroscopy. Proc. Natl Acad. Sci. USA 79, 28852889.
  • Shima, T., Sarna, T., Swartz, H.M., Stroppolo, A., Gerbasi, R., and Zecca, L. (1997). Binding of iron to neuromelanin of human substantia nigra and synthetic melanin: an electron paramagnetic resonance spectroscopy study. Free Radic. Biol. Med. 23, 110119.
  • Simon, J.D., Hong, L., and Peles, D.N. (2008). Insights into melanosomes and melanin from some interesting spatial and temporal properties. J. Phys. Chem. B 112, 1320113217.
  • Solano, F., Martinez-Liarte, J.H., Jiménez-Cervantes, C., García-Borrón, J.C., and Lozano, J.A. (1994). Dopachrome tautomerase is a zinc-containing enzyme. Biochem. Biophys. Res. Commun. 204, 12431250.
  • Solano, F., Jimenez-Cervantes, C., Martinez-Liarte, J.H., Garcia-Borron, J.C., Jara, J.R., and Lozano, J.A. (1996). Molecular mechanism for catalysis by a new zinc-enzyme, dopachrome tautomerase. Biochem. J. 313, 447453.
  • Solano, F., Martinez-Esparza, M., Jimenez-Cervantes, C., Hill, S.P., Lozano, J.A., and Garcia-Borron, J.C. (2000). New insights on the structure of the mouse silver locus and on the function of the silver protein. Pigment Cell Res. 13(Suppl. 8), 118124.
  • Sugumaran, M., and Bolton, J.L. (1998). Laccase–and not tyrosinase–is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol. Arch. Biochem. Biophys. 353, 207212.
  • Tomita, Y., Hariu, A., . Kato, C., and Seiji, M. (1983). Transfer of tyrosinase to melanosomes in Harding-Passey mouse melanoma. Arch. Biochem. Biophys. 225, 7585.
  • Tran, M.L., Powell, B.J., and Meredith, P. (2006). Chemical and structural disorder in eumelanins: a possible explanation for broadband absorbance. Biophys. J . 90, 743752.
  • Trias, J., Viñas, M., Guinea, J., and Lorèn, J.G. (1989). Brown pigmentation in Serratia marcescens cultures associated with tyrosine metabolism. Can. J. Microbiol. 35, 10371042.
  • Urabe, K., Aroca, P., Tsukamoto, K., Mascagna, D., Palumbo, A., Prota, G., and Hearing, V.J. (1994). The inherent cytotoxicity of melanin precursors: a revision. Biochim. Biophys. Acta 1221, 272278.
  • Valverde, P., García-Borrón, J.C., Solano, F., and Lozano, J.A. (1992). Proteolysis with trypsin of mammalian tyrosinase isoforms from B16 mouse melanoma. Arch. Biochem. Biophys. 297, 221227.
  • Valverde, P., Jiménez-Cervantes, C., Salinas, C., García-Borrón, J.C., Solano, F., and Lozano, J.A. (1993). Preparation of purified tyrosinase devoid of dopachrome tautomerase from mammalian malignant melanocytes. Pigment Cell Res. 6, 158164.
  • Wakamatsu, K., and Ito, S. (1988). Preparation of eumelanin-related metabolites 5,6-dihydroxyindole, 5,6-dihydroxyindole-2-carboxylic acid, and their O-methyl derivatives. Anal. Biochem. 170, 335340.
  • Wakamatsu, K., Ito, S., and Nagatsu, T. (1991). Cysteinyldopamine is not incorporated into neuromelanin. Neurosci. Lett. 131, 5760.
  • Wakamatsu, K., Ito, S., and Rees, J.L. (2002). The usefulness of 4-amino-3-hydroxyphenylalanine as a specific marker of pheomelanin. Pigment Cell Res. 15, 225232.
  • Wakamatsu, K., Fujikawa, K., Zucca, F.A., Zecca, L., and Ito, S. (2003). The structure of neuromelanin as studied by chemical degradative methods. J. Neurochem. 86, 10151023.
  • Wakamatsu, K., Ohtara, K., and Ito, S. (2009). Chemical analysis of late stages of pheomelanogenesis: conversion of dihydrobenzothiazine to a benzothiazole structure. Pigment Cell Melanoma Res. 22, 474486.
  • Wakamatsu, K., Nakanishi, Y., Miyazaki, N., Kolbe, L., and Ito, S. (2012a). UVA-induced oxidative degradation of melanins: fission of indole moiety in eumelanin and conversion to benzothiazole moiety in pheomelanin. Pigment Cell Melanoma Res. 25, 434445.
  • Wakamatsu, K., Murase, T., Zucca, F.A., Zecca, L., and Ito, S. (2012b). Biosynthetic pathway to neuromelanin and its aging process. Pigment Cell Melanoma Res. 25, 793802.
  • Watabe, H., Kushimoto, T., Valencia, J.C., and Hearing, V.J. (2005). Isolation of melanosomes. Curr. Protoc. Cell Biol. Unit 3.14 DOI: 10.1002/0471143030.cb0314s26
  • Watt, A.A.R., Bothma, J., and Meredith, P. (2009). The supramolecular structure of melanin. Soft Matter 5, 3754.
  • Zecca, L., Tampellini, D., Gerlach, M., Riederer, P., Fariello, R.G., and Sulzer, D. (2001). Substantia nigra neuromelanin: structure, synthesis, and molecular behaviour. Mol. Pathol. 54, 414418.
  • Zecca, L., Stroppolo, A., Gatti, A. et al. (2004). The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc. Natl Acad. Sci. USA 101, 98439848.
  • Zecca, L., Casella, L., Albertini, A., Bellei, C., Zucca, F.A., Engelen, M., Zadlo, A., Szewczyk, G., Zareba, M., and Sarna, T. (2008). Neuromelanin can protect against iron-mediated oxidative damage in system modeling iron overload of brain aging and Parkinson's disease. J. Neurochem. 106, 18661875.