SEARCH

SEARCH BY CITATION

References

  • Abd Elmageed, Z.Y., Gaur, R.L., Williams, M., Abdraboh, M.E., Rao, P.N., Raj, M.H., Ismail, F.M., and Ouhtit, A. (2009). Characterization of coordinated immediate responses by p16INK4A and p53 pathways in UVB-irradiated human skin cells. J. Invest. Dermatol. 129, 175183.
  • AIHW and AACR (2012). Cancer in Australia: an overview 2012. (Canberra, Australia: AIHW and AACR).
  • Al-Ejeh, F., Kumar, R., Wiegmans, A., Lakhani, S.R., Brown, M.P., and Khanna, K.K. (2010). Harnessing the complexity of DNA-damage response pathways to improve cancer treatment outcomes. Oncogene 29, 60856098.
  • Al-Khalaf, H.H., Hendrayani, S.F., and Aboussekhra, A. (2011). The Atr protein kinase controls UV-dependent upregulation of p16INK4A through inhibition of Skp2-related polyubiquitination/degradation. Mol. Cancer Res. 9, 311319.
  • Anders, L., Ke, N., Hydbring, P. et al. (2011). A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 20, 620634.
  • Ashworth, A. (2008). A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J. Clin. Oncol. 26, 37853790.
  • Auclair, Y., Rouget, R., Belisle, J.M., Costantino, S., and Drobetsky, E.A. (2010). Requirement for functional DNA polymerase eta in genome-wide repair of UV-induced DNA damage during S phase. DNA Repair (Amst) 9, 754764.
  • Balch, C.M., Soong, S.J., Gershenwald, J.E. et al. (2001). Prognostic factors analysis of 17 600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol. 19, 36223634.
  • Barckhausen, C., Roos, W.P., Naumann, S.C., and Kaina, B. (2013). Malignant melanoma cells acquire resistance to DNA interstrand cross-linking chemotherapeutics by p53-triggered upregulation of DDB2/XPC-mediated DNA repair. Oncogene 22, 141.
  • Barrett, J.H., Iles, M.M., Harland, M. et al. (2011). Genome-wide association study identifies three new melanoma susceptibility loci. Nat. Genet. 43, 11081113.
  • Bartkova, J., Lukas, J., Guldberg, P., Alsner, J., Kirkin, A.F., Zeuthen, J., and Bartek, J. (1996). The p16-cyclin D/Cdk4-pRb pathway as a functional unit frequently altered in melanoma pathogenesis. Cancer Res. 56, 54755483.
  • Belden, S., and Flaherty, K.T. (2012). MEK and RAF inhibitors for BRAF-mutated cancers. Expert Rev. Mol. Med. 14, e17.
  • Berger, M.F., Hodis, E., Heffernan, T.P. et al. (2012). Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485, 502506.
  • Bomgarden, R.D., Lupardus, P.J., Soni, D.V., Yee, M.C., Ford, J.M., and Cimprich, K.A. (2006). Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase eta on ATR checkpoint signaling. EMBO J. 25, 26052614.
  • Bower, J.J., Zhou, Y., Zhou, T., Simpson, D.A., Arlander, S.J., Paules, R.S., Cordeiro-Stone, M., and Kaufmann, W.K. (2010). Revised genetic requirements for the decatenation G(2) checkpoint: the role of ATM. Cell Cycle 9, 16171628.
  • Box, N.F., and Terzian, T. (2008). The role of p53 in pigmentation, tanning and melanoma. Pigment Cell Melanoma Res. 21, 525533.
  • Brooks, K., Chia, K.M., Spoerri, L., Mukhopadhyay, P., Wigan, M., Stark, M., Pavey, S. and Gabrielli, B. (2013b). Defective Decatenation Checkpoint Function Is a Common Feature of Melanoma. J Invest Dermatol. doi: 10.1038/jid.2013.264. [Epub ahead of print].
  • Brooks, K., Oakes, V., Edwards, B. et al. (2013a). A potent Chk1 inhibitor is selectively cytotoxic in melanomas with high levels of replicative stress. Oncogene 32, 788796.
  • Budden, T., and Bowden, N.A. (2013). The role of altered nucleotide excision repair and UVB-induced DNA damage in melanomagenesis. Int. J. Mol. Sci. 14, 11321151.
  • Burgess, A.J., Pavey, S., Warrener, R., Hunter, L.J., Piva, T.J., Musgrove, E.A., Saunders, N., Parsons, P.G., and Gabrielli, B.G. (2001). Up-regulation of p21(WAF1/CIP1) by histone deacetylase inhibitors reduces their cytotoxicity. Mol. Pharmacol. 60, 828837.
  • Burgess, A., Wigan, M., Giles, N., Depinto, W., Gillespie, P., Stevens, F., and Gabrielli, B. (2006). Inhibition of S/G2 phase CDK4 reduces mitotic fidelity. J. Biol. Chem. 281, 99879995.
  • Burmeister, B.H., Henderson, M.A., Ainslie, J. et al. (2012). Adjuvant radiotherapy versus observation alone for patients at risk of lymph-node field relapse after therapeutic lymphadenectomy for melanoma: a randomised trial. Lancet Oncol. 13, 589597.
  • Byun, T.S., Pacek, M., Yee, M.C., Walter, J.C., and Cimprich, K.A. (2005). Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 10401052.
  • Cadet, J., Mouret, S., Ravanat, J.L., and Douki, T. (2012). Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem. Photobiol. 88, 10481065.
  • Callegari, A.J., Clark, E., Pneuman, A., and Kelly, T.J. (2010). Postreplication gaps at UV lesions are signals for checkpoint activation. Proc. Natl Acad. Sci. USA 107, 82198224.
  • Carson, C., Omolo, B., Chu, H. et al. (2012). A prognostic signature of defective p53-dependent G1 checkpoint function in melanoma cell lines. Pigment Cell Melanoma Res. 25, 514526.
  • Castellano, M., Pollock, P.M., Walters, M.K., Sparrow, L.E., Down, L.M., Gabrielli, B.G., Parsons, P.G., and Hayward, N.K. (1997). CDKN2A/p16 is inactivated in most melanoma cell lines. Cancer Res. 57, 48684875.
  • Chan, D.A., and Giaccia, A.J. (2011). Harnessing synthetic lethal interactions in anticancer drug discovery. Nat. Rev. Drug Discov. 10, 351364.
  • Chan, G.K., Liu, S.T., and Yen, T.J. (2005). Kinetochore structure and function. Trends Cell Biol. 15, 589598.
  • Chang, D.J., and Cimprich, K.A. (2009). DNA damage tolerance: when it's OK to make mistakes. Nat. Chem. Biol. 5, 8290.
  • Chapman, P.B., Einhorn, L.H., Meyers, M.L. et al. (1999). Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J. Clin. Oncol. 17, 27452751.
  • Chapman, P.B., Hauschild, A., Robert, C. et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 25072516.
  • Corcoran, R.B., Ebi, H., Turke, A.B. et al. (2012). EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2, 227235.
  • Cui, R., Widlund, H.R., Feige, E. et al. (2007). Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 128, 853864.
  • Curtin, N.J. (2012). DNA repair dysregulation from cancer driver to therapeutic target. Nat. Rev. Cancer 12, 801817.
  • Dai, Y., and Grant, S. (2010). New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin. Cancer Res. 16, 376383.
  • Daigaku, Y., Davies, A.A., and Ulrich, H.D. (2010). Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465, 951955.
  • Davies, H., Bignell, G.R., Cox, C. et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417, 949954.
  • Deming, P.B., Cistulli, C.A., Zhao, H., Graves, P.R., Piwnica-Worms, H., Paules, R.S., Downes, C.S., and Kaufmann, W.K. (2001). The human decatenation checkpoint. Proc. Natl Acad. Sci. USA 98, 1204412049.
  • Dhomen, N., Reis-Filho, J.S., Da Rocha Dias, S., Hayward, R., Savage, K., Delmas, V., Larue, L., Pritchard, C., and Marais, R. (2009). Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15, 294303.
  • Di Lucca, J., Guedj, M., Lacapere, J.J. et al. (2009). Variants of the xeroderma pigmentosum variant gene (POLH) are associated with melanoma risk. Eur. J. Cancer 45, 32283236.
  • Diamant, N., Hendel, A., Vered, I., Carell, T., Reissner, T., De Wind, N., Geacinov, N., and Livneh, Z. (2012). DNA damage bypass operates in the S and G2 phases of the cell cycle and exhibits differential mutagenicity. Nucleic Acids Res. 40, 170180.
  • Enk, C.D., Jacob-Hirsch, J., Gal, H., Verbovetski, I., Amariglio, N., Mevorach, D., Ingber, A., Givol, D., Rechavi, G., and Hochberg, M. (2006). The UVB-induced gene expression profile of human epidermis in vivo is different from that of cultured keratinocytes. Oncogene 25, 26012614.
  • Falchook, G.S., Long, G.V., Kurzrock, R. et al. (2012). Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379, 18931901.
  • Fang, M., Xia, F., Mahalingam, M., Virbasius, C.M., Wajapeyee, N., and Green, M.R. (2013). MEN1 is a Melanoma Tumor Suppressor that Preserves Genomic Integrity by Stimulating Transcription of Genes that Promote Homologous Recombination-Directed DNA Repair. Mol. Cell. Biol. 6, 6.
  • Flaherty, K.T., Infante, J.R., Daud, A. et al. (2012). Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 16941703.
  • Fokas, E., Prevo, R., Hammond, E.M., Brunner, T.B., McKenna, W.G., and Muschel, R.J. (2013). Targeting ATR in DNA damage response and cancer therapeutics. Cancer Treat. Rev. doi: 10.1016/j.ctrv.2013.03.002. [Epub ahead of print].
  • Gabrielli, B., and Brown, M. (2012). Histone deacetylase inhibitors disrupt the mitotic spindle assembly checkpoint by targeting histone and nonhistone proteins. Adv. Cancer Res. 116, 137.
  • Gabrielli, B.G., Sarcevic, B., Sinnamon, J., Walker, G., Castellano, M., Wang, X.Q., and Ellem, K.A. (1999). A cyclin D-Cdk4 activity required for G2 phase cell cycle progression is inhibited in ultraviolet radiation-induced G2 phase delay. J. Biol. Chem. 274, 1396113969.
  • Gabrielli, B., Brooks, K., and Pavey, S. (2012). Defective cell cycle checkpoints as targets for anti-cancer therapies. Front. Pharmacol. 3, 9.
  • Gaddameedhi, S., Kemp, M.G., Reardon, J.T., Shields, J.M., Smith-Roe, S.L., Kaufmann, W.K., and Sancar, A. (2010). Similar nucleotide excision repair capacity in melanocytes and melanoma cells. Cancer Res. 70, 49224930.
  • Gangavarapu, V., Prakash, S., and Prakash, L. (2007). Requirement of RAD52 group genes for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 77587764.
  • Gembarska, A., Luciani, F., Fedele, C. et al. (2012). MDM4 is a key therapeutic target in cutaneous melanoma. Nat. Med. 18, 12391247.
  • Gohler, T., Sabbioneda, S., Green, C.M., and Lehmann, A.R. (2011). ATR-mediated phosphorylation of DNA polymerase eta is needed for efficient recovery from UV damage. J. Cell Biol. 192, 219227.
  • Gray-Schopfer, V.C., Cheong, S.C., Chong, H., Chow, J., Moss, T., Abdel-Malek, Z.A., Marais, R., Wynford-Thomas, D., and Bennett, D.C. (2006). Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br. J. Cancer 95, 496505.
  • Haass, N.K., Sproesser, K., Nguyen, T.K., Contractor, R., Medina, C.A., Nathanson, K.L., Herlyn, M., and Smalley, K.S. (2008). The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin. Cancer Res. 14, 230239.
  • Haferkamp, S., Becker, T.M., Scurr, L.L., Kefford, R.F., and Rizos, H. (2008). p16INK4a-induced senescence is disabled by melanoma-associated mutations. Aging Cell 7, 733745.
  • Haferkamp, S., Tran, S.L., Becker, T.M., Scurr, L.L., Kefford, R.F., and Rizos, H. (2009). The relative contributions of the p53 and pRb pathways in oncogene-induced melanocyte senescence. Aging (Albany NY). 1, 542556.
  • Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646674.
  • Hayward, N.K. (2003). Genetics of melanoma predisposition. Oncogene 22, 30533062.
  • Hodis, E., Watson, I.R., Kryukov, G.V. et al. (2012). A landscape of driver mutations in melanoma. Cell 150, 251263.
  • Horn, S., Figl, A., Rachakonda, P.S. et al. (2013). TERT promoter mutations in familial and sporadic melanoma. Science 339, 959961.
  • Huang, F.W., Hodis, E., Xu, M.J., Kryukov, G.V., Chin, L., and Garraway, L.A. (2013). Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957959.
  • Jakob, J.A., Bassett, R.L. Jr, Ng, C.S. et al. (2012). NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 118, 40144023.
  • Jansen, J.G., Tsaalbi-Shtylik, A., and De Wind, N. (2009a). Functional interactions between DNA damage signaling and mutagenic translesion synthesis at post-replicative gaps. Cell Cycle 8, 28572858.
  • Jansen, J.G., Tsaalbi-Shtylik, A., Hendriks, G. et al. (2009b). Separate domains of Rev1 mediate two modes of DNA damage bypass in mammalian cells. Mol. Cell. Biol. 29, 31133123.
  • Jemal, A., Siegel, R., Xu, J., and Ward, E. (2010). Cancer statistics, 2010. CA Cancer J. Clin. 60, 277300.
  • Jhappan, C., Noonan, F.P., and Merlino, G. (2003). Ultraviolet radiation and cutaneous malignant melanoma. Oncogene 22, 30993112.
  • Joshi, K.S., Rathos, M.J., Mahajan, P. et al. (2007). P276-00, a novel cyclin-dependent inhibitor induces G1-G2 arrest, shows antitumor activity on cisplatin-resistant cells and significant in vivo efficacy in tumor models. Mol. Cancer Ther. 6, 926934.
  • Kadekaro, A.L., Leachman, S., Kavanagh, R.J. et al. (2010). Melanocortin 1 receptor genotype: an important determinant of the damage response of melanocytes to ultraviolet radiation. FASEB J. 24, 38503860.
  • Karras, G.I., and Jentsch, S. (2010). The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141, 255267.
  • Kaufmann, W.K. (2007). Initiating the uninitiated: replication of damaged DNA and carcinogenesis. Cell Cycle 6, 14601467.
  • Kaufmann, W.K., Nevis, K.R., Qu, P. et al. (2008). Defective cell cycle checkpoint functions in melanoma are associated with altered patterns of gene expression. J. Invest. Dermatol. 128, 175187.
  • Knauf, J.A., Ouyang, B., Knudsen, E.S., Fukasawa, K., Babcock, G., and Fagin, J.A. (2006). Oncogenic RAS induces accelerated transition through G2/M and promotes defects in the G2 DNA damage and mitotic spindle checkpoints. J. Biol. Chem. 281, 38003809.
  • Krauthammer, M., Kong, Y., Ha, B.H. et al. (2012). Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat. Genet. 44, 10061014.
  • Kuiken, H.J., and Beijersbergen, R.L. (2010). Exploration of synthetic lethal interactions as cancer drug targets. Future Oncol. 6, 17891802.
  • Lapenna, S., and Giordano, A. (2009). Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov. 8, 547566.
  • Law, M.H., Macgregor, S., and Hayward, N.K. (2012). Melanoma genetics: recent findings take us beyond well-traveled pathways. J. Invest. Dermatol. 132, 17631774.
  • Lazar, V., Ecsedi, S., Szollosi, A.G., Toth, R., Vizkeleti, L., Rakosy, Z., Begany, A., Adany, R., and Balazs, M. (2009). Characterization of candidate gene copy number alterations in the 11q13 region along with BRAF and NRAS mutations in human melanoma. Mod. Pathol. 22, 13671378.
  • Li, C., Hu, Z., Liu, Z. et al. (2006). Polymorphisms in the DNA repair genes XPC, XPD, and XPG and risk of cutaneous melanoma: a case-control analysis. Cancer Epidemiol. Biomarkers Prev. 15, 25262532.
  • Lin, J.R., Zeman, M.K., Chen, J.Y., Yee, M.C., and Cimprich, K.A. (2011). SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol. Cell 42, 237249.
  • Lopes, M., Foiani, M., and Sogo, J.M. (2006). Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 1527.
  • Ma, C.X., Janetka, J.W., and Piwnica-Worms, H. (2011). Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol. Med. 17, 8896.
  • Macklis, R. (2012). Finally, a substantial role for radiotherapy in melanoma. Lancet Oncol. 13, 561562.
  • Mailand, N., Falck, J., Lukas, C., Syljuasen, R.G., Welcker, M., Bartek, J., and Lukas, J. (2000). Rapid destruction of human Cdc25A in response to DNA damage. Science 288, 14251429.
  • Malumbres, M., and Barbacid, M. (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153166.
  • Martin, S.A., Lord, C.J., and Ashworth, A. (2008). DNA repair deficiency as a therapeutic target in cancer. Curr. Opin. Genet. Dev. 18, 8086.
  • Masutani, C., Kusumoto, R., Yamada, A., Dohmae, N., Yokoi, M., Yuasa, M., Araki, M., Iwai, S., Takio, K. and Hanaoka, F. (1999). The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399, 700704.
  • Medema, R.H., and Macurek, L. (2012). Checkpoint control and cancer. Oncogene 31, 26012613.
  • Michaloglou, C., Vredeveld, L.C., Soengas, M.S., Denoyelle, C., Kuilman, T., Van Der Horst, C.M., Majoor, D.M., Shay, J.W., Mooi, W.J., and Peeper, D.S. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720724.
  • Middleton, M.R., Grob, J.J., Aaronson, N. et al. (2000). Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J. Clin. Oncol. 18, 158166.
  • Milligan, A., Gabrielli, B.G., Clark, J.M., Hayward, N.K., and Ellem, K.A.O. (1998). Involvement of p16CDKN2A in cell cycle delays after low dose UV irradiation. Mutat. Res. 422, 4353.
  • Millikan, R.C., Hummer, A., Begg, C. et al. (2006). Polymorphisms in nucleotide excision repair genes and risk of multiple primary melanoma: the Genes Environment and Melanoma Study. Carcinogenesis 27, 610618.
  • Morandell, S., and Yaffe, M.B. (2012). Exploiting synthetic lethal interactions between DNA damage signaling, checkpoint control, and p53 for targeted cancer therapy. Prog. Mol. Biol. Transl. Sci. 110, 289314.
  • Morgan, M.A., Parsels, L.A., Zhao, L. et al. (2010). Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res. 70, 49724981.
  • Mouret, S., Charveron, M., Favier, A., Cadet, J., and Douki, T. (2008). Differential repair of UVB-induced cyclobutane pyrimidine dimers in cultured human skin cells and whole human skin. DNA Repair (Amst.) 7, 704712.
  • Musacchio, A., and Salmon, E.D. (2007). The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379393.
  • Muthusamy, V., Hobbs, C., Nogueira, C., Cordon-Cardo, C., McKee, P.H., Chin, L., and Bosenberg, M.W. (2006). Amplification of CDK4 and MDM2 in malignant melanoma. Genes Chromosom. Cancer 45, 447454.
  • Myers, K., Gagou, M.E., Zuazua-Villar, P., Rodriguez, R., and Meuth, M. (2009). ATR and Chk1 suppress a caspase-3-dependent apoptotic response following DNA replication stress. PLoS Genet. 5, e1000324.
  • Nazarian, R., Shi, H., Wang, Q. et al. (2010). Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973977.
  • Novarina, D., Amara, F., Lazzaro, F., Plevani, P., and Muzi-Falconi, M. (2011). Mind the gap: keeping UV lesions in check. DNA Repair (Amst.) 10, 751759.
  • O'Connell, M.J., and Cimprich, K.A. (2005). G2 damage checkpoints: what is the turn-on? J. Cell Sci. 118, 16.
  • Omolo, B., Carson, C., Chu, H., Zhou, Y., Simpson, D.A., Hesse, J.E., Paules, R.S., Nyhan, K.C., Ibrahim, J.G., and Kaufmann, W.K. (2013). A prognostic signature of G 2 checkpoint function in melanoma cell lines. Cell Cycle 12, 10711082.
  • Paraiso, K.H., Xiang, Y., Rebecca, V.W. et al. (2011). PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 71, 27502760.
  • Pathania, S., Nguyen, J., Hill, S.J., Scully, R., Adelmant, G.O., Marto, J.A., Feunteun, J., and Livingston, D.M. (2011). BRCA1 is required for postreplication repair after UV-induced DNA damage. Mol. Cell 44, 235251.
  • Pavey, S., Conroy, S., Russell, T., and Gabrielli, B. (1999). Ultraviolet radiation induces p16CDKN2A expression in human skin. Cancer Res. 59, 41854189.
  • Pavey, S., Russell, T., and Gabrielli, B. (2001). G2 phase cell cycle arrest in human skin following UV irradiation. Oncogene 20, 61036110.
  • Petrocelli, T., Poon, R., Drucker, D.J., Slingerland, J.M., and Rosen, C.F. (1996). UVB radiation induces p21Cip1/WAF1 and mediates G1 and S phase checkpoints. Oncogene 12, 13871396.
  • Pfeifer, G.P., and Besaratinia, A. (2012). UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem. Photobiol. Sci. 11, 9097.
  • Pleasance, E.D., Cheetham, R.K., Stephens, P.J. et al. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191196.
  • Pollock, P.M., Pearson, J.V., and Hayward, N.K. (1996). Compilation of somatic mutations of the CDKN2 gene in human cancers: non-random distribution of base substitutions. Genes Chromosom. Cancer 15, 7788.
  • Ponten, F., Berne, B., Ren, Z.P., Nister, M., and Ponten, J. (1995). Ultraviolet light induces expression of p53 and p21 in human skin: effect of sunscreen and constitutive p21 expression in skin appendages. J. Invest. Dermatol. 105, 402406.
  • Poulikakos, P.I., and Rosen, N. (2011). Mutant BRAF melanomas–dependence and resistance. Cancer Cell 19, 1115.
  • Povey, J.E., Darakhshan, F., Robertson, K. et al. (2007). DNA repair gene polymorphisms and genetic predisposition to cutaneous melanoma. Carcinogenesis 28, 10871093.
  • Qiu, L., Burgess, A., Fairlie, D.P., Leonard, H., Parsons, P.G., and Gabrielli, B.G. (2000). Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol. Biol. Cell 11, 20692083.
  • Reinhardt, H.C., Jiang, H., Hemann, M.T., and Yaffe, M.B. (2009). Exploiting synthetic lethal interactions for targeted cancer therapy. Cell Cycle 8, 31123119.
  • Robles, S.J., and Adami, G.R. (1998). Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16, 11131123.
  • Roesch, A., Becker, B., Meyer, S., Wild, P., Hafner, C., Landthaler, M., and Vogt, T. (2005). Retinoblastoma-binding protein 2-homolog 1: a retinoblastoma-binding protein downregulated in malignant melanomas. Mod. Pathol. 18, 12491257.
  • Senderowicz, A.M. (2003). Novel direct and indirect cyclin-dependent kinase modulators for the prevention and treatment of human neoplasms. Cancer Chemother. Pharmacol. 52(Suppl 1), S61S73.
  • Sertic, S., Pizzi, S., Cloney, R., Lehmann, A.R., Marini, F., Plevani, P., and Muzi-Falconi, M. (2011). Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. Proc. Natl Acad. Sci. USA 108, 1364713652.
  • Shapiro, G.I. (2006). Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 24, 17701783.
  • Shapiro, G.I., Edwards, C.D., Ewen, M.E., and Rollins, B.J. (1998). p16ink4a participates in a G1 arrest checkpoint in response to DNA damage. Mol. Cell. Biol. 18, 378387.
  • Shepherd, C., Puzanov, I., and Sosman, J.A. (2010). B-RAF inhibitors: an evolving role in the therapy of malignant melanoma. Curr. Oncol. Rep. 12, 146152.
  • Silver, D.P., Richardson, A.L., Eklund, A.C. et al. (2010). Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J. Clin. Oncol. 28, 11451153.
  • Smalley, K.S., Haass, N.K., Brafford, P.A., Lioni, M., Flaherty, K.T., and Herlyn, M. (2006). Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol. Cancer Ther. 5, 11361144.
  • Smalley, K.S., Contractor, R., Haass, N.K. et al. (2007). An organometallic protein kinase inhibitor pharmacologically activates p53 and induces apoptosis in human melanoma cells. Cancer Res. 67, 209217.
  • Smalley, K.S., Contractor, R., Nguyen, T.K. et al. (2008a). Identification of a novel subgroup of melanomas with KIT/cyclin-dependent kinase-4 overexpression. Cancer Res. 68, 57435752.
  • Smalley, K.S., Lioni, M., Dalla Palma, M. et al. (2008b). Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol. Cancer Ther. 7, 28762883.
  • Smith, J., Tho, L.M., Xu, N., and Gillespie, D.A. (2010). The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv. Cancer Res. 108, 73112.
  • Smyth, J.F., Aamdal, S., Awada, A. et al. (2005). Phase II study of E7070 in patients with metastatic melanoma. Ann. Oncol. 16, 158161.
  • Soria, G., and Gottifredi, V. (2010). PCNA-coupled p21 degradation after DNA damage: the exception that confirms the rule? DNA Repair (Amst.) 9, 358364.
  • Soufir, N., Avril, M.F., Chompret, A., Demenais, F., Bombled, J., Spatz, A., Stoppa-Lyonnet, D., Benard, J., and Bressac-De Paillerets, B. (1998). Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum. Mol. Genet. 7, 209216.
  • Stevens, F.E., Beamish, H., Warrener, R., and Gabrielli, B. (2008). Histone deacetylase inhibitors induce mitotic slippage. Oncogene 27, 13451354.
  • Stiff, T., Cerosaletti, K., Concannon, P., O'Driscoll, M., and Jeggo, P.A. (2008). Replication independent ATR signalling leads to G2/M arrest requiring Nbs1, 53BP1 and MDC1. Hum. Mol. Genet. 17, 32473253.
  • Stoyanova, T., Roy, N., Kopanja, D., Raychaudhuri, P., and Bagchi, S. (2009). DDB2 (damaged-DNA binding protein 2) in nucleotide excision repair and DNA damage response. Cell Cycle 8, 40674071.
  • Sultana, R., Abdel-Fatah, T., Perry, C., Moseley, P., Albarakti, N., Mohan, V., Seedhouse, C., Chan, S., and Madhusudan, S. (2013). Ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells. PLoS One 8, e57098.
  • Taylor, W.R., and Stark, G.R. (2001). Regulation of the G2/M transition by p53. Oncogene 20, 18031815.
  • Terret, C., Zanetta, S., Roche, H., Schellens, J.H., Faber, M.N., Wanders, J., Ravic, M., Droz, J.P., and Group E. E. C. S. (2003). Phase I clinical and pharmacokinetic study of E7070, a novel sulfonamide given as a 5-day continuous infusion repeated every 3 weeks in patients with solid tumours. A study by the EORTC Early Clinical Study Group (ECSG). Eur. J. Cancer 39, 10971104.
  • Tsai, J., Lee, J.T., Wang, W. et al. (2008). Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl Acad. Sci. USA 105, 30413046.
  • Utikal, J., Udart, M., Leiter, U., Peter, R.U., and Krahn, G. (2005). Additional Cyclin D(1) gene copies associated with chromosome 11 aberrations in cutaneous malignant melanoma. Int. J. Oncol. 26, 597605.
  • Villanueva, J., Vultur, A., Lee, J.T. et al. (2010). Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18, 683695.
  • Vizkeleti, L., Ecsedi, S., Rakosy, Z., Orosz, A., Lazar, V., Emri, G., Koroknai, V., Kiss, T., Adany, R., and Balazs, M. (2012). The role of CCND1 alterations during the progression of cutaneous malignant melanoma. Tumour Biol. 33, 21892199.
  • Vredeveld, L.C., Possik, P.A., Smit, M.A. et al. (2012). Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev. 26, 10551069.
  • Vrouwe, M.G., Pines, A., Overmeer, R.M., Hanada, K., and Mullenders, L.H. (2011). UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways. J. Cell Sci. 124, 435446.
  • Vultur, A., Villanueva, J., and Herlyn, M. (2011). Targeting BRAF in advanced melanoma: a first step toward manageable disease. Clin. Cancer Res. 17, 16581663.
  • Wagner, J.D., Gordon, M.S., Chuang, T.Y., and Coleman, J.J. 3rd (2000). Current therapy of cutaneous melanoma. Plast. Reconstr. Surg. 105, 17741799.
  • Wang, X.Q., Gabrielli, B.G., Milligan, A., Dickinson, J.L., Antalis, T.M., and Ellem, K.A. (1996). Accumulation of p16CDKN2A in response to ultraviolet irradiation correlates with late S-G(2)-phase cell cycle delay. Cancer Res. 56, 25102514.
  • Warrener, R., Beamish, H., Burgess, A., Waterhouse, N.J., Giles, N., Fairlie, D., and Gabrielli, B. (2003). Tumor cell-selective cytotoxicity by targeting cell cycle checkpoints. FASEB J. 17, 15501552.
  • Wigan, M., Pinder, A., Giles, N., Pavey, S., Burgess, A., Wong, S., Sturm, R., and Gabrielli, B. (2012). A UVR-induced G2 phase checkpoint response to ssDNA gaps produced by replication fork bypass of unrepaired lesions is defective in melanoma. J. Invest. Dermatol. 132, 16811688.
  • Wolfel, T., Hauer, M., Schneider, J., Serrano, M., Wolfel, C., Klehmann-Hieb, E., De Plaen, E., Hankeln, T., Meyer Zum Buschenfelde, K.H., and Beach, D. (1995). A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 12811284.
  • Yadav, V., Zhang, X., Liu, J., Estrem, S., Li, S., Gong, X.Q., Buchanan, S., Henry, J.R., Starling, J.J., and Peng, S.B. (2012). Reactivation of mitogen-activated protein kinase (MAPK) pathway by FGF receptor 3 (FGFR3)/Ras mediates resistance to vemurafenib in human B-RAF V600E mutant melanoma. J. Biol. Chem. 287, 2808728098.
  • Yoon, J.H., Prakash, L., and Prakash, S. (2009). Highly error-free role of DNA polymerase eta in the replicative bypass of UV-induced pyrimidine dimers in mouse and human cells. Proc. Natl Acad. Sci. USA 106, 1821918224.