• astrocytes;
  • first-episode psychosis;
  • neuroinflammation;
  • S100B;
  • schizophrenia

The research for peripheral biological markers of schizophrenia, although abundant, has been unfruitful. In the last 2 decades, the S100B protein has made its own room in this area of research. S100B is a calcium-binding protein that has been proposed as a marker of astrocyte activation and brain dysfunction. Research results on S100B concentrations and schizophrenia clinical diagnosis are very consistent; patients with schizophrenia have higher S100B concentrations than healthy controls. The results regarding schizophrenia subtypes and clinical characteristics are not as conclusive. Age of patients, body mass index, illness duration and age at onset have been found to show no correlation, a positive correlation or a negative correlation with S100B levels. With respect to psychopathology, S100B data are inconclusive. Positive, negative and absence of correlation between S100B concentrations and positive and negative psychopathology have been reported. Methodological biases, such as day/night and seasonal variations, the use of anticoagulants to treat biological samples, the type of analytical technique to measure S100B and the different psychopathological scales to measure schizophrenia symptoms, are some of the factors that should be taken into account when researching into this area in order to reduce the variability of the reported results. The clinical implications of S100B changes in schizophrenia remain to be elucidated.