• 1
    Cummings JL. Frontal-subcortical circuits and human behavior. Arch. Neurol. 1993; 50: 873880.
  • 2
    Tierney MC, Black SE, Szalai JP et al. Recognition memory and verbal fluency differentiate probable Alzheimer disease from subcortical ischemic vascular dementia. Arch. Neurol. 2001; 58: 16541659.
  • 3
    Bocti C, Swartz RH, Gao FQ, Sahlas DJ, Behl P, Black SE. A new visual rating scale to assess strategic white matter hyperintensities within cholinergic pathways in dementia. Stroke 2005; 36: 21262131.
  • 4
    Gouw AA, Seewann A, van der Flier WM et al. Heterogeneity of small vessel disease: A systematic review of MRI and histopathology correlations. J. Neurol. Neurosurg. Psychiatry 2011; 82: 126135.
  • 5
    Johnson H, Cowey A. Transneuronal retrograde degeneration of retinal ganglion cells following restricted lesions of striate cortex in the monkey. Exp. Brain Res. 2000; 132: 269275.
  • 6
    Schallert T, Jones TA, Lindner MD. Multilevel transneuronal degeneration after brain damage. Behavioral events and effects of anticonvulsant gamma-aminobutyric acid-related drugs. Stroke 1990; 21: III143III146.
  • 7
    Scheltens P, Barkhof F, Leys D, Wolters EC, Ravid R, Kamphorst W. Histopathologic correlates of white matter changes on MRI in Alzheimer's disease and normal aging. Neurology 1995; 45: 883888.
  • 8
    Nitkunan A, McIntyre DJ, Barrick TR et al. Correlations between MRS and DTI in cerebral small vessel disease. NMR Biomed. 2006; 19: 610616.
  • 9
    Erkinjuntti T, Inzitari D, Pantoni L et al. Research criteria for subcortical vascular dementia in clinical trials. J. Neural Transm. Suppl. 2000; 59: 2330.
  • 10
    Fazekas F, Chawluk JB, Alavi A, Hurtig H, Zimmerman R. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am. J. Roentgenol. 1987; 149: 351356.
  • 11
    Lee JH, Lee KU, Lee DY et al. Development of the Korean version of the Consortium to Establish a Registry for Alzheimer's disease assessment packet (CERAD-K): Clinical and neuropsychological assessment batteries. J. Gerontol. B Psychol. Sci. Soc. Sci. 2002; 57: 4753.
  • 12
    Kim TH, Huh YS, Choe JY et al. Korean version of frontal assessment battery: Psychometric properties and normative data. Dement. Geriatr. Cogn. Disord. 2010; 29: 363370.
  • 13
    Ashburner J, Friston KJ. Voxel-based morphometry – the methods. Neuroimage 2000; 11: 805821.
  • 14
    Mazziotta J, Toga A, Evans A et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. Lond. B. Biol Sci. 2001; 356: 12931322.
  • 15
    Felderhoff-Mueser U, Rutherford MA, Squier WV et al. Relationship between MR imaging and histopathologic findings of the brain in extremely sick preterm infants. AJNR Am. J. Neuroradiol. 1999; 20: 13491357.
  • 16
    Rajapakse JC, Giedd JN, Rapoport JL. Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans. Med. Imaging 1997; 16: 176186.
  • 17
    Tohka J, Zijdenbos A, Evans A. Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage 2004; 23: 8497.
  • 18
    Fischl B, Salat DH, Busa E et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341355.
  • 19
    Fischl B, Salat DH, van der Kouwe AJ et al. Sequence-independent segmentation of magnetic resonance images. Neuroimage 2004; 23: S69S84.
  • 20
    Samaille T, Fillon L, Cuingnet R et al. Contrast-based fully automatic segmentation of white matter hyperintensities: Method and validation. PLoS ONE 2012; 7: e48953.
  • 21
    Olsson E, Klasson N, Berge J et al. White matter lesion assessment in patients with cognitive impairment and healthy controls: Reliability comparisons between visual rating, a manual, and an automatic volumetrical MRI method – the Gothenburg MCI study. J. Aging Res. 2013; 2013: 198471.
  • 22
    Smith SM, Jenkinson M, Woolrich MW et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23: S208S219.
  • 23
    Smith SM. BET: Brain extraction tool. Technical Report T R00S M S2a, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Oxford University 2000.
  • 24
    Smith SM, Jenkinson M, Johansen-Berg H et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 2006; 31: 14871505.
  • 25
    Smith SM, Johansen-Berg H, Jenkinson M et al. Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nat. Protoc. 2007; 2: 499503.
  • 26
    Smith SM, Nichols TE. Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 2009; 44: 8398.
  • 27
    Mori S, Wakana S, Van Zijl PCM, Nagae-Poetscher L. MRI Atlas of Human White Matter. Elsevier, Amsterdam, 2005.
  • 28
    Lopez OL, Jagust WJ, Dulberg C et al. Risk factors for mild cognitive impairment in the Cardiovascular Health Study Cognition Study: Part 2. Arch. Neurol. 2003; 60: 13941399.
  • 29
    Smith EE, Egorova S, Blacker D et al. Magnetic resonance imaging white matter hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia. Arch. Neurol. 2008; 65: 94100.
  • 30
    DeCarli C, Mungas D, Harvey D et al. Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. Neurology 2004; 63: 220227.
  • 31
    Seo SW, Ahn J, Yoon U et al. Cortical thinning in vascular mild cognitive impairment and vascular dementia of subcortical type. J. Neuroimaging 2010; 20: 3745.
  • 32
    Seo SW, Lee JM, Im K et al. Cortical thinning related to periventricular and deep white matter hyperintensities. Neurobiol. Aging 2012; 33: 11561167.
  • 33
    Schmahmann JD, Smith EE, Eichler FS, Filley CM. Cerebral white matter: Neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann. N. Y. Acad. Sci. 2008; 1142: 266309.
  • 34
    Ghashghaei HT, Barbas H. Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 2002; 115: 12611279.
  • 35
    Sugihara S, Kinoshita T, Matsusue E, Fujii S, Ogawa T. Usefulness of diffusion tensor imaging of white matter in Alzheimer disease and vascular dementia. Acta Radiol. 2004; 45: 658663.
  • 36
    Hanyu H, Imon Y, Sakurai H et al. Regional differences in diffusion abnormality in cerebral white matter lesions in patients with vascular dementia of the Binswanger type and Alzheimer's disease. Eur. J. Neurol. 1999; 6: 195203.
  • 37
    Doron KW, Gazzaniga MS. Neuroimaging techniques offer new perspectives on callosal transfer and interhemispheric communication. Cortex 2008; 44: 10231029.
  • 38
    Tomimoto H, Lin JX, Matsuo A et al. Different mechanisms of corpus callosum atrophy in Alzheimer's disease and vascular dementia. J. Neurol. 2004; 251: 398406.
  • 39
    Gazzaniga MS. The human brain is actually two brains, each capable of advanced mental functions. When the cerebrum is divided surgically, it is as if the cranium contained two separate spheres of consciousness. Sci. Am. 1967; 217: 2429.
  • 40
    Gazzaniga MS. Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain 2000; 123 (Pt 7): 12931326.
  • 41
    Sperry R. Consciousness, personal identity and the divided brain. Neuropsychologia 1984; 22: 661673.
  • 42
    Fein G, Di Sclafani V, Tanabe J et al. Hippocampal and cortical atrophy predict dementia in subcortical ischemic vascular disease. Neurology 2000; 55: 16261635.