SEARCH

SEARCH BY CITATION

References

  • Armstrong, G.A.B., Rodríguez, E.C. & Robertson, R.M. (2012) Cold hardening modulates K+ homeostasis in the brain of Drosophila melanogaster during chill coma. Journal of Insect Physiology, 58, 15111516.
  • Bennett, V.A. & Lee, R.E. (1997) Modeling seasonal changes in intracellular freeze-tolerance of fat body cells of the gall fly Eurosta solidaginis (Diptera, Tephritidae). Journal of Experimental Biology, 200, 185192.
  • Chen, C.P., Denlinger, D.L. & Lee, R.E. (1987) Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiological Zoology, 60, 297304.
  • Chou, C.L., Yip, K.P., Michea, L. et al. (2000) Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct—roles of ryanodine-sensitive Ca2+ stores and calmodulin. Journal of Biological Chemistry, 275, 3683936846.
  • Clowers, K.J., Lyman, R.F., Mackay, T.F.C. & Morgan, T.J. (2010) Genetic variation in senescence marker protein-30 is associated with natural variation in cold tolerance in Drosophila. Genetics Research, 92, 103113.
  • Colinet, H. & Hoffmann, A.A. (2012) Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Functional Ecology, 26, 8493.
  • Colinet, H., Lee, S.F. & Hoffmann, A. (2010) Knocking down expression of Hsp22 and Hsp23 by RNA interference affects recovery from chill coma in Drosophila melanogaster. Journal of Experimental Biology, 213, 41464150.
  • Colinet, H., Renault, D., Charoy-Guevel, B. & Com, E. (2012) Metabolic and proteomic profiling of diapause in the aphid parasitoid Praon volucre. PLoS ONE, 7, e32606.
  • Coulson, S.J. & Bale, J.S. (1991) Anoxia induces rapid cold hardening in the housefly Musca domestica (Diptera, Muscidae). Journal of Insect Physiology, 37, 497501.
  • Denlinger, D.L. (1991) Relationship between cold hardiness and diapause. Insects at Low Temperature (ed. by R. E. Lee and D. L. Denlinger), pp. 174198. Chapman & Hall, New York, New York.
  • Denlinger, D.L. & Lee, R.E. (1998) Physiology of cold sensitivity. Temperature Sensitivity in Insects and Application in Integrated Pest Management (ed. by G. J. Hallman and D. L. Denlinger), pp. 5595. Westview Press, Boulder, Colorado.
  • Denlinger, D.L., Yocum, G.D. & Rinehart, J.P. (2005) Hormonal control of diapause. Comprehensive Insect Molecular Science (ed. by L. I. Gilbert, K. Iatrou and S. Gill), pp. 615650. Elsevier, The Netherlands.
  • Denton, R.M. (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochimica et Biophysica Acta-Bioenergetics, 1787, 13091316.
  • Dollo, V.H., Yi, S.-X. & Lee, R.E. (2010) High temperature pulses decrease indirect chilling injury and elevate ATP levels in the flesh fly, Sarcophaga crassipalpis. Cryobiology, 60, 351353.
  • Duman, J.G. (1979) Thermal-hysteresis factors in overwintering insects. Journal of Insect Physiology, 25, 805810.
  • Duman, J.G. (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annual Review of Physiology, 63, 327357.
  • Duman, J.G., Walters, K.R., Sformo, T., Carrasco, M.A., Nickell, P. & Barnes, B.M. (2010) Antifreeze and ice nucleator proteins. Low Temperature Biology of Insects (ed. by D. L. Denlinger and R. E. Lee), pp. 5990. Cambridge University Press, U.K.
  • Elnitsky, M.A., Hayward, S.A.L., Rinehart, J.P. et al. (2008) Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. Journal of Experimental Biology, 211, 524530.
  • Everatt, M.J., Worland, M.R., Bale, J.S. et al. (2012) Pre-adapted to the maritime Antarctic? – rapid cold hardening of the midge, Eretmoptera murphyi. Journal of Insect Physiology, 58, 11041111.
  • Feder, M.E. & Hofmann, G.E. (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology, 61, 243282.
  • Fujiwara, Y. & Denlinger, D.L. (2007) p38 MAPK is a likely component of the signal transduction pathway triggering rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Journal of Experimental Biology, 210, 32953300.
  • Goto, S.G. (2000) Expression of Drosophila homologue of senescence marker protein-30 during cold acclimation. Journal of Insect Physiology, 46, 11111120.
  • Hahn, D.A., Ragland, G.J., Shoemaker, D.D. & Denlinger, D.L. (2009) Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis. BMC Genomics, 10, 234.
  • Hawes, T.C. & Bale, J.S. (2007) Plasticity in arthropod cryotypes. Journal of Experimental Biology, 210, 25852592.
  • Holmstrup, M., Bayley, M. & Ramlov, H. (2002) Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proceedings of the National Academy of Sciences of the United States of America, 99, 57165720.
  • Joanisse, D.R. & Storey, K.B. (1996) Oxidative stress and antioxidants in overwintering larvae of cold-hardy goldenrod gall insects. Journal of Experimental Biology, 199, 14831491.
  • Johnson, L.N. (1992) Glycogen-phosphorylase – control by phosphorylation and allosteric effectors. FASEB Journal, 6, 22742282.
  • Kayukawa, T., Chen, B., Hoshizaki, S. & Ishikawa, Y. (2007) Upregulation of a desaturase is associated with the enhancement of cold hardiness in the onion maggot, Delia antiqua. Insect Biochemistry and Molecular Biology, 37, 11601167.
  • Kelty, J.D. & Lee, R.E. (2001) Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles. Journal of Experimental Biology, 204, 16591666.
  • Kim, M., Robich, R.M., Rinehart, J.P. & Denlinger, D.L. (2006) Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens. Journal of Insect Physiology, 52, 12261233.
  • Koštál, V. (2010) Cell structural modifications in insects at low temperatures. Low Temperature Biology of Insects. (ed. by D. L. Denlinger and R. E. Lee), 116140. Cambridge University Press, U.K.
  • Koštál, V. & Šimek, P. (1998) Changes in fatty acid composition of phospholipids and triacylglycerols after cold-acclimation of an aestivating insect prepupa. Journal of Comparative Physiology, 168, 453460.
  • Koštál, V., Berková, P. & Šimek, P. (2003) Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comparative Biochemistry and Physiology Part B, 135, 407419.
  • Koštál, V., Vambera, J. & Bastl, J. (2004) On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. Journal of Experimental Biology, 207, 15091521.
  • Koštál, V., Yanagimoto, M. & Bastl, J. (2006) Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea). Comparative Biochemistry and Physiology Part B, 143, 171179.
  • Koštál, V., Korbelová, J., Rozsypal, J. et al. (2011a) Long-term cold acclimation extends survival time at 0 °C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. PLoS ONE, 6, e25025.
  • Koštál, V., Zahradníčková, H. & Šimek, P. (2011b) Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 108, 1304113046.
  • Koštál, V., Šimek, P., Zahradníčková, H. et al. (2012) Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proceedings of the National Academy of Sciences of the United States of America, 109, 32703274.
  • Kroemer, G., Dallaporta, B. & Resche-Rigon, M. (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annual Review of Physiology, 60, 619642.
  • Landry, J., Lambert, H., Zhou, M. et al. (1992) Human Hsp27 is phosphorylated at serines 78 and 82 by heat-shock and mitogen-activated kinases that recognize the same amino-acid motif as S6 kinase-II. Journal of Biological Chemistry, 267, 794803.
  • Lee, R.E. (2010) A primer on insect cold tolerance. Low Temperature Biology of Insects (ed. by D. L. Denlinger and R. E. Lee) pp. 334. Cambridge University Press, U.K.
  • Lee, R.E. & Denlinger, D.L. (1985) Cold tolerance in diapausing and non-diapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiological Entomology, 10, 309315.
  • Lee, R.E. & Denlinger, D.L. (2010) Rapid cold-hardening: ecological significance and underpinning mechanisms. Low Temperature Biology of Insects (ed. by D. L. Denlinger and R. E. Lee) pp. 3558. Cambridge University Press, U.K.
  • Lee, R.E., Chen, C.P. & Denlinger, D.L. (1987) A rapid cold-hardening process in insects. Science, 238, 14151417.
  • Lee, R.E., Damodaran, K., Yi, S.-X. & Lorigan, G.A. (2006a) Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology, 52, 459463.
  • Lee, R.E., Elnitsky, M.A., Rinehart, J.P. et al. (2006b) Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. Journal of Experimental Biology, 209, 399406.
  • Levis, N.A., Yi, S.X. & Lee, R.E. (2012) Mild desiccation rapidly increases freeze tolerance of the goldenrod gall fly, Eurosta solidaginis: evidence for drought-induced rapid cold-hardening. Journal of Experimental Biology, 215, 37683773.
  • Li, A.Q., Popova-Butler, A., Dean, D.H. & Denlinger, D.L. (2007) Proteomics of the flesh fly brain reveals an abundance of upregulated heat shock proteins during pupal diapause. Journal of Insect Physiology, 53, 385391.
  • Li, F.-F., Xia, J., Li, J.-M. et al. (2012) p38 MAPK is a component of the signal transduction pathway triggering cold stress response in the MED cryptic species of Bemisia tabaci. Journal of Integrative Agriculture, 11, 303311.
  • MacMillan, H.A. & Sinclair, B.J. (2011) Mechanisms underlying insect chill-coma. Journal of Insect Physiology, 57, 1220.
  • MacMillan, H.A., Guglielmo, C.G. & Sinclair, B.J. (2009) Membrane remodeling and glucose in Drosophila melanogaster: a test of rapid cold-hardening and chilling tolerance hypotheses. Journal of Insect Physiology, 55, 243249.
  • MacMillan, H.A., Williams, C.M., Staples, J.F. & Sinclair, B.J. (2012) Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proceedings of the National Academy of Sciences of the United States of America, 109, 2075020755.
  • Michaud, M.R. & Denlinger, D.L. (2006) Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology, 52, 10731082.
  • Michaud, M.R. & Denlinger, D.L. (2007) Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison. Journal of Comparative Physiology B, 177, 753763.
  • Misener, S.R., Chen, C.P. & Walker, V.K. (2001) Cold tolerance and proline metabolic gene expression in Drosophila melanogaster. Journal of Insect Physiology, 47, 393400.
  • Moribe, Y., Oka, K., Niimi, T. et al. (2010) Expression of heat shock protein 70a mRNA in Bombyx mori diapause eggs. Journal of Insect Physiology, 56, 12461252.
  • Mugnano, J.A., Lee, R.E. & Taylor, R.T. (1996) Fat body cells and calcium phosphate spherules induce ice nucleation in the freeze-tolerant larvae of the gall fly Eurosta solidaginis (Diptera, Tephritidae). Journal of Experimental Biology, 199, 465471.
  • Overgaard, J., Sørensen, J.G., Petersen, S.O. et al. (2005) Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. Journal of Insect Physiology, 51, 11731182.
  • Overgaard, J., Sørensen, J.G., Petersen, S.O. et al. (2006) Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster. Physiological Entomology, 31, 328335.
  • Overgaard, J., Malmendal, A., Sørensen, J.G. et al. (2007) Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology, 53, 12181232.
  • Overgaard, J., Tomčala, A., Sørensen, J.G. et al. (2008) Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster. Journal of Insect Physiology, 54, 619629.
  • Pearson, G., Robinson, F., Gibson, T.B. et al. (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews, 22, 153183.
  • Philip, B.N. & Lee, R.E. (2010) Changes in abundance of aquaporin-like proteins occurs concomitantly with seasonal acquisition of freeze tolerance in the goldenrod gall fly, Eurosta solidaginis. Journal of Insect Physiology, 56, 679685.
  • Philip, B.N., Yi, S.-X., Elnitsky, M.A. & Lee, R.E. (2008) Aquaporins play a role in desiccation and freeze tolerance in larvae of the goldenrod gall fly, Eurosta solidaginis. Journal of Experimental Biology, 211, 11141119.
  • Powell, S.J. & Bale, J.S. (2005) Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness. Journal of Experimental Biology, 208, 26152620.
  • Ragland, G.J., Denlinger, D.L. & Hahn, D.A. (2010) Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. Proceedings of the National Academy of Sciences of the United States of America, 107, 1490914914.
  • Ragland, G.J., Egan, S.P., Feder, J.L. et al. (2011) Developmental trajectories of gene expression reveal candidates for diapause termination: a key life-history transition in the apple maggot fly Rhagoletis pomonella. Journal of Experimental Biology, 214, 39483959.
  • Rajamohan, A. & Sinclair, B.J. (2009) Hardening trumps acclimation in improving cold tolerance of Drosophila melanogaster larvae. Physiological Entomology, 34, 217223.
  • Rako, L. & Hoffmann, A.A. (2006) Complexity of the cold acclimation response in Drosophila melanogaster. Journal of Insect Physiology, 52, 94104.
  • Rinehart, J.P., Yocum, G.D. & Denlinger, D.L. (2000) Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochemistry and Molecular Biology, 30, 515521.
  • Rinehart, J.P., Robich, R.M. & Denlinger, D.L. (2006) Enhanced cold and desiccation tolerance in diapausing adults of Culex pipiens, and a role for hsp70 in response to cold shock but not as a component of the diapause program. Journal of Medical Entomology, 43, 713722.
  • Rinehart, J.P., Li, A., Yocum, G.D. et al. (2007) Up-regulation of heat shock proteins is essentail for cold survival during insect diapause. Proceedings of the National Academy of Sciences of the United States of America, 104, 1113011137.
  • Rosenzweig, M., Kang, K.J. & Garrity, P.A. (2008) Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 105, 1466814673.
  • Salt, R.W. (1961) Principles of insect cold-hardiness. Annual Review of Entomology, 6, 5574.
  • Shintani, Y. & Ishikawa, Y. (2007) Relationship between rapid cold-hardening and cold acclimation in the eggs of the yellow-spotted longicorn beetle, Psacothea hilaris. Journal of Insect Physiology, 53, 10551062.
  • Shreve, S.M., Yi, S.-X. & Lee, R.E. (2007) Increased dietary cholesterol enhances cold tolerance in Drosophila melanogaster. CryoLetters, 28, 3337.
  • Sim, C. & Denlinger, D.L. (2011) Catalase and superoxide dismutase-2 enhance survival and protect ovaries during overwintering diapause in the mosquito Culex pipiens. Journal of Insect Physiology, 57, 628634.
  • Sinclair, B.J., Addo-Bediako, A. & Chown, S.L. (2003a) Climatic variability and the evolution of insect freeze tolerance. Biological Reviews, 78, 181195.
  • Sinclair, B.J., Vernon, P., Klok, C.J. & Chown, S.L. (2003b) Insects at low temperatures: an ecological perspective. Trends in Ecology & Evolution, 18, 257262.
  • Sinclair, B.J., Gibbs, A.G. & Roberts, S.P. (2007) Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster. Insect Molecular Biology, 16, 435443.
  • Sinensky, M. (1974) Homeoviscous adaptation – homeostatic process that regulates viscosity of membrane lipids in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 71, 522525.
  • Steponkus, P.L. (1984) Role of the plasma-membrane in freezing-injury and cold-acclimation. Annual Review of Plant Physiology and Plant Molecular Biology, 35, 543584.
  • Storey, K.B. & Storey, J.M. (1991) Biochemistry of cryoprotectants. Insects at Low Temperature (ed. by R. E. Lee and D. L. Denlinger), pp. 6493. Champman and Hall, New York, New York.
  • Storey, K.B. & Storey, J.M. (2011) Insect cold hardiness: metabolic, gene, and protein adaptation. Canadian Journal of Zoology, 90, 456475.
  • Storey, K.B., Baust, J.G. & Storey, J.M. (1981) Intermediary metabolism during low-temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis. Journal of Comparative Physiology, 144, 183190.
  • Tachibana, S.I., Numata, H. & Goto, S.G. (2005) Gene expression of heat-shock proteins (Hsp23, Hsp70 and Hsp90) during and after larval diapause in the blow fly Lucilia sericata. Journal of Insect Physiology, 51, 641647.
  • Takeda, K., Matsuzawa, A., Nishitoh, H. et al. (2004) Involvement of ASK1 in Ca2+-induced p38 MAP kinase activation. EMBO Reports, 5, 161166.
  • Takeuchi, K., Nakano, Y., Kato, U. et al. (2009) Changes in temperature preferences and energy homeostasis in dystroglycan mutants. Science, 323, 17401743.
  • Teets, N.M., Elnitsky, M.A., Benoit, J.B. et al. (2008) Rapid cold-hardening in larvae of the Antarctic midge Belgica antarctica: cellular cold-sensing and a role for calcium. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 294, R1938R1946.
  • Teets, N.M., Peyton, J.T., Ragland, G.J. et al. (2012) Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiological Genomics, 44, 764777.
  • Thomashow, M.F. (1999) Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 571599.
  • Thompson, S.N. (2003) Trehalose – the insect ‘blood’ sugar. Advances in Insect Physiology, 31, 205285.
  • Tomčala, A., Tollarová, M., Overgaard, J. et al. (2006) Seasonal acquisition of chill tolerance and restructuring of membrane glycerophospholipids in an overwintering insect: triggering by low temperature, desiccation and diapause progression. Journal of Experimental Biology, 209, 41024114.
  • Tursman, D. & Duman, J.G. (1995) Cryoprotective effects of thermal hysteresis protein on survivorship of frozen gut cells from the freeze-tolerant centipede Lithobius forficatus. Journal of Experimental Zoology, 272, 249257.
  • Vesala, L., Salminen, T.S., Koštál, V. et al. (2012a) Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly. Journal of Experimental Biology, 215, 28912897.
  • Vesala, L., Salminen, T.S., Laiho, A. et al. (2012b) Cold tolerance and cold-induced modulation of gene expression in two Drosophila virilis group species with different distributions. Insect Molecular Biology, 21, 107118.
  • Walters, K.R., Serianni, A.S., Sformo, T. et al. (2009) A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides. Proceedings of the National Academy of Sciences of the United States of America, 106, 2021020215.
  • Walters, K.R., Serianni, A.S., Voituron, Y. et al. (2011) A thermal hysteresis-producing xylomannan glycolipid antifreeze associated with cold tolerance is found in diverse taxa. Journal of Comparative Physiology B, 181, 631640.
  • Williams, J.B., Ruehl, N.C. & Lee, R.E. (2004) Partial link between the seasonal acquisition of cold-tolerance and desiccation resistance in the goldenrod gall fly Eurosta solidaginis (Diptera: Tephritidae). Journal of Experimental Biology, 207, 44074414.
  • Yancey, P.H. (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology, 208, 28192830.
  • Yano, S., Tokumitsu, H. & Sodeling, T.R. (1998) Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature, 396, 584587.
  • Yi, S.-X. & Lee, R.E. (2004) In vivo and in vitro rapid cold-hardening protects cells from cold-shock injury in the flesh fly. Journal of Comparative Physiology B, 174, 611615.
  • Yi, S.-X. & Lee, R.E. (2011) Rapid cold-hardening blocks cold-induced apoptosis by inhibiting the activation of pro-caspases in the flesh fly Sarcophaga crassipalpis. Apoptosis, 16, 249255.
  • Yi, S.-X., Moore, C.W. & Lee, R.E. (2007) Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Apoptosis, 12, 11831193.
  • Yocum, G.D. (2001) Differential expression of two HSP70 transcripts in response to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle. Journal of Insect Physiology, 47, 11391145.
  • Yocum, G.D., Joplin, K.H. & Denlinger, D.L. (1998) Upregulation of a 23 kDa small heat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochemistry and Molecular Biology, 28, 677682.
  • Yoder, J.A., Benoit, J.B., Denlinger, D.L. & Rivers, D.B. (2006) Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. Journal of Insect Physiology, 52, 202214.