Adult eclosion rhythm of the Indian meal moth Plodia interpunctella: response to various thermocycles with different means and amplitudes


Correspondence: Shigeru Kikukawa, Biological Institute, Faculty of Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan. Tel.: +81 076 445 6635; e-mail:


In addition to photoperiod, thermoperiod (or thermocycle) might be an important Zeitgeber for entraining the circadian oscillator controlling adult eclosion rhythm in the Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae). This is confirmed by exposing larvae receiving diapause-preventing treatments to various thermocycles with different means and amplitudes of temperature. The thermocycles investigated in the present study are TC 8 : 16 h, TC 12 : 12 h, TC 16 : 8 h and TC 20 : 4 h, where T and C represent thermophase (30 °C) and cryophase (20 °C), respectively. For all thermocycles, the peak of adult eclosion rhythm occurs at around the mid-thermophase. This indicates that the larvae use both ‘temperature-rise’ and ‘temperature-fall’ signals to adjust the eclosion phase in each thermocycle. The absence (DD) or presence (LL) of light affects this time-keeping system slightly under the given thermocycle. The rhythmic adult eclosion noted after exposure of larvae to 30 °C DD for 14 days is recorded in the thermocycles (TC 12 : 12 h, DD; mean temperature = 25 °C) with different amplitudes of 27.5/22.5 °C, 26.5/23.5 °C and 25.5/24.5 °C. The peak in adult eclosion advances in time as the amplitude of the temperature cycle decreases. In the temperature cycle of 25.5/24.5 °C, a peak occurs at the end of the cryophase, 2 h before the temperature-rise. The adult eclosion rhythm is also observed under various thermocycles (TC 12 : 12 h, DD) consisting of different temperature levels (30 to 20 °C) with different amplitudes. It is found that the temporal position of the peak advances significantly when the amplitude of the thermocycle becomes lower.