• 1
    Smith, H. (1992) Light quality, photoperception and plant strategy. Annu. Rev. Plant Biol. 33, 481518.
  • 2
    Borthwick, H. A., S. B. Hendricks, M. W. Parker, E. H. Toole and V. K. Toole (1952) A reversible photoreaction controlling seed germination. Proc. Natl. Acad. Sci. U S A 38, 662666.
  • 3
    Butler, W. L., K. H. Norris, H. W. Siegelman and S. B. Hendricks (1959) Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc. Natl. Acad. Sci. U S A 45, 17031708.
  • 4
    Hughes, J., T. Lamparter, F. Mittmann, E. Hartmann, W. Gärtner, A. Wilde and T. Börner (1997) A prokaryotic phytochrome. Nature 386, 663.
  • 5
    Lamparter, T., F. Mittmann, W. Gärtner, T. Börner, E. Hartmann and J. Hughes (1997) Characterization of recombinant phytochrome from the cyanobacterium Synechocystis. Proc. Natl. Acad. Sci. U S A 94, 1179211797.
  • 6
    Yeh, K.-C., S.-H. Wu, J. T. Murphy and J. C. Lagarias (1997) A cyanobacterial phytochrome two-component light sensory system. Science 277, 15051508.
  • 7
    Davis, S. J., A. V. Vener and R. D. Vierstra (1999) Bacteriophytochromes: Phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286, 25172520.
  • 8
    Montgomery, B. L. and J. C. Lagarias (2002) Phytochrome ancestry: Sensors of bilins and light. Trends Plant Sci. 7, 357366.
  • 9
    Karniol, B., J. R. Wagner, J. M. Walker and R. D. Vierstra (2005) Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochem. J. 392, 103116.
  • 10
    Bhoo, S.-H., S. J. Davis, J. Walker, B. Karniol and R. D. Vierstra (2001) Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414, 776779.
  • 11
    Blumenstein, A., K. Vienken, R. Tasler, J. Purschwitz, D. Veith, N. Frankenberg-Dinkel and R. Fischer (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15, 18331838.
  • 12
    Sage, L. C. (1992) Pigment of the Imagination: A History of Phytochrome Research. Academic Press, San Diego, CA.
  • 13
    Yoshihara, S., F. Suzuki, H. Fujita, X. X. Geng and M. Ikeuchi (2000) Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 41, 12991304.
  • 14
    Rockwell, N. C., Y.-S. Su and J. C. Lagarias (2006) Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57, 837858.
  • 15
    Lagarias, J. C. and D. M. Lagarias (1989) Self-assembly of synthetic phytochrome holoprotein in vitro. Proc. Natl. Acad. Sci. U S A 86, 57785780.
  • 16
    Borucki, B., D. von Stetten, S. Seibeck, T. Lamparter, N. Michael, M. A. Mroginski, H. Otto, D. H. Murgida, M. P. Heyn and P. Hildebrandt (2005) Light-induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore. J. Biol. Chem. 280, 3435834364.
  • 17
    Gärtner, W. and S. E. Braslavsky (2004) The phytochromes: Spectroscopy and function. In Photoreceptors and Light Signalling (Edited by A. Batschauer), pp. 136180. Royal Society of Chemistry, Cambridge.
  • 18
    Gärtner, W. (2012) Kurt Schaffner: From organic photochemistry to photobiology. Photochem. Photobiol. Sci. 11, 872880.
  • 19
    Eilfeld, P. and W. Rüdiger (1985) Absorption spectra of phytochrome intermediates. Z. Naturforschung 40c, 109114.
  • 20
    Eilfeld, P., P. Eilfeld, J. Vogel and R. Maurer (1987) Evidence for a sequential pathway from Pr to Pfr of the phototransformation of 124-kDa oat phytochrome. Photochem. Photobiol. 45, 825830.
  • 21
    Scurlock, R. D., C. H. Evans, S. E. Braslavsky and K. Schaffner (1993) A phytochrome phototransformation study using two-laser/two-color flash photolysis: Analysis of the decay mechanism of I700. Photochem. Photobiol. 58, 106115.
  • 22
    Matsushita, T., N. Mochizuki and A. Nagatani (2003) Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature 424, 571574.
  • 23
    Nagatani, A. (2010) Phytochrome: Structural basis for its functions. Curr. Opin. Plant Biol. 13, 565570.
  • 24
    Hughes, J. (2010) Phytochrome three-dimensional structures and functions. Biochem. Soc. Trans. 38, 710716.
  • 25
    Schneider-Poetsch, H. A. W. and B. Braun (1991) Proposal on the nature of phytochrome action based on the C-terminal sequences of phytochromes. J. Plant Physiol. 137, 576580.
  • 26
    Cherry, J. R., D. Hondred, J. M. Walker and R. D. Vierstra (1992) Phytochrome requires the 6-kDa N-terminal domain for full biological activity. Proc. Natl. Acad. Sci. U S A 89, 50395043.
  • 27
    Trupkin, S. A., D. Debrieux, A. Hiltbrunner, C. Fankhauser and J. J. Casal (2007) The serine-rich N-terminal region of Arabidopsis phytochrome A is required for protein stability. Plant Mol. Biol. 63, 669678.
  • 28
    Sweere, U., K. Eichenberg, J. Lohrmann, V. Mira-Rodado, I. Bäurle, J. Kudla, F. Nagy, E. Schäfer and K. Harter (2001) Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science 294, 11081111.
  • 29
    Lagarias, J. C. and H. Rapoport (1980) Chromopeptides from phytochrome: The structure and linkage of the PR form of the phytochrome chromophore. J. Am. Chem. Soc. 102, 48214828.
  • 30
    Fry, K. T. and F. E. Mumford (1971) Isolation and partial characterization of a chromophore-peptide fragment from pepsin digests of phytochrome. Biochem. Biophys. Res. Commun. 45, 14661473.
  • 31
    Lamparter, T., M. Carrascal, N. Michael, E. Martinez, G. Rottwinkel and J. Abian (2004) The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1. Biochemistry 43, 36593669.
  • 32
    Sharrock, R. A. and P. H. Quail (1989) Novel phytochrome sequences in Arabidopsis thaliana: Structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 3, 17451757.
  • 33
    Casal, J. J. (2000) Phytochromes, cryptochromes, phototropin: Photoreceptor interactions in plants. Photochem. Photobiol. 71, 111.
  • 34
    Wagner, J. R., J. S. Brunzelle, K. T. Forest and R. D. Vierstra (2005) A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 438, 325331.
  • 35
    Yang, X., E. A. Stojković, J. Kuk and K. Moffat (2007) Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome, RpBphP3, reveals residues that modulate photoconversion. Proc. Natl. Acad. Sci. U S A 104, 1257112576.
  • 36
    Essen, L.-O., J. Mailliet and J. Hughes (2008) The structure of a complete phytochrome sensory module in the Pr ground state. Proc. Natl. Acad. Sci. U S A 105, 1470914714.
  • 37
    Yang, X., J. Kuk and K. Moffat (2008) Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: Photoconversion and signal transduction. Proc. Natl. Acad. Sci. U S A 105, 1471514720.
  • 38
    Yang, X., J. Kuk and K. Moffat (2009) Conformational differences between the Pfr and Pr states in Pseudomonas aeruginosa bacteriophytochrome. Proc. Natl. Acad. Sci. U S A 106, 1563915644.
  • 39
    Rüdiger, W., F. Thümmler, E. Cmiel and S. Schneider (1983) Chromophore structure of the physiologically active form (Pfr) of phytochrome. Proc. Natl. Acad. Sci. U S A 80, 62446248.
  • 40
    Hahn, J., H. M. Strauss and P. Schmieder (2008) Heteronuclear NMR investigation on the structure and dynamics of the chromophore binding pocket of the cyanobacterial phytochrome Cph1. J. Am. Chem. Soc. 130, 1117011178.
  • 41
    Matysik, J., P. Hildebrandt, W. Schlamann, S. E. Braslavsky and K. Schaffner (1995) Fourier-transform resonance Raman spectroscopy of intermediates of the phytochrome photocycle. Biochemistry 34, 1049710507.
  • 42
    Foerstendorf, H., C. Benda, W. Gärtner, M. Storf, H. Scheer and F. Siebert (2001) FTIR studies of phytochrome photoreactions reveal the C=O bands of the chromophore: Consequences for its protonation states, conformation, and protein interaction. Biochemistry 40, 1495214959.
  • 43
    Dasgupta, J., R. R. Frontiera, K. C. Taylor, J. C. Lagarias and R. A. Mathies (2009) Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. Proc. Natl. Acad. Sci. U S A 106, 17841789.
  • 44
    Mroginski, M. A., D. H. Murgida and P. Hildebrandt (2009) The chromophore structural changes during the photocycle of phytochrome: A combined resonance Raman and quantum chemical approach. Acc. Chem. Res. 40, 258266.
  • 45
    Mroginski, M. A., S. Kaminski, D. von Stetten, S. Ringsdorf, W. Gärtner, L.-O. Essen and P. Hildebrandt (2011) Structure of the chromophore binding pocket in the Pr state of plant phytochrome phyA. J. Phys. Chem. B 115, 12201231.
  • 46
    Rohmer, T., H. Strauss, J. Hughes, H. de Groot, W. Gärtner, P. Schmieder and J. Matysik (2006) 15N MAS NMR studies of Cph1 phytochrome: Chromophore dynamics and intramolecular signal transduction. J. Phys. Chem. B 110, 2058020585.
  • 47
    Rohmer, T., C. Lang, C. Bongards, K. B. S. S. Gupta, J. Neugebauer, J. Hughes, W. Gärtner and J. Matysik (2010) Phytochrome as molecular machine: Revealing chromophore action during the Pfr [RIGHTWARDS ARROW] Pr photoconversion by magic-angle spinning NMR spectroscopy. J. Am. Chem. Soc. 132, 44314437.
  • 48
    Rohmer, T., C. Lang, J. Hughes, L.-O. Essen, W. Gärtner and J. Matysik (2008) Light-induced chromophore activity and signal transduction in phytochromes observed by 13C and 15N magic-angle spinning NMR. Proc. Natl. Acad. Sci. U S A 105, 1522915234.
  • 49
    Song, C., G. Psakis, C. Lang, J. Mailliet, W. Gärtner, J. Hughes and J. Matysik (2011) Two ground state isoforms and a chromophore D-ring photoflip triggering extensive intramolecular changes in a canonical phytochrome. Proc. Natl. Acad. Sci. U S A 108, 38423847.
  • 50
    Yang, X., R. Zhong, J. Kuk and K. Moffat (2011) Temperature-scan crystallography reveals reaction intermediates in bacteriophytochrome. Nature 479, 428432.
  • 51
    Ulijasz, A. T., G. Cornilescu, C. C. Cornilescu, J. Zhang, M. Rivera, J. L. Markley and R. D. Vierstra (2010) Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature 463, 250254.
  • 52
    Mozley, D., A. Remberg and W. Gärtner (1997) Large-scale generation of affinity-purified recombinant phytochrome chromopeptide. Photochem. Photobiol. 66, 710715.
  • 53
    Lamparter, T., B. Esteban and J. Hughes (2001) Phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803. Purification, assembly, and quaternary structure. Eur. J. Biochem. 268, 47204730.
  • 54
    Strauss, H. M., P. Schmieder and J. Hughes (2005) Light-dependent dimerisation in the N-terminal sensory module of cyanobacterial phytochrome 1. FEBS Lett. 579, 39703974.
  • 55
    Strauss, H. M., J. Hughes and P. Schmieder (2005) Heteronuclear solution-state NMR studies of the chromophore in cyanobacterial phytochrome Cph1. Biochemistry 44, 82448250.
  • 56
    Castellani, F., B. van Rossum, A. Diehl, M. Schubert, K. Rehbein and H. Oschkinat (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420, 98102.
  • 57
    Zech, S. G., A. J. Wand and A. E. McDermott (2005) Protein structure determination by high-resolution solid-state NMR spectroscopy: Application to microcrystalline ubiquitin. J. Am. Chem. Soc. 127, 86188626.
  • 58
    Lange, A., S. Becker, K. Seidel, K. Giller, O. Pongs and M. Baldus (2005) A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew. Chem. Int. Ed. 44, 20892092.
  • 59
    Saitô, H. and A. Naito (2007) NMR studies on fully hydrated membrane proteins, with emphasis on bacteriorhodopsin as a typical and prototype membrane protein. Biochim. Biophys. Acta 1768, 31453161.
  • 60
    Hong, M., Y. Zhang and F. Hu (2012) Membrane protein structure and dynamics from NMR spectroscopy. Annu. Rev. Phys. Chem. 63, 124.
  • 61
    Song, C., L.-O. Essen, W. Gärtner, J. Hughes and J. Matysik (2012) Solid-state NMR spectroscopic study of chromophore–protein interactions in the Pr ground state of plant phytochrome A. Mol. Plant 5, 698715.
  • 62
    Song, C., C. Lang, J. Mailliet, J. Hughes, W. Gärtner and J. Matysik (2012) Exploring chromophore-binding pocket: High-resolution solid-state 1H–13C interfacial correlation NMR spectra with windowed PMLG scheme. Appl. Magn. Reson. 42, 7988.
  • 63
    Song, C., G. Psakis, C. Lang, J. Mailliet, J. Zaanen, W. Gärtner, J. Hughes and J. Matysik (2011) On the collective nature of phytochrome photoactivation. Biochemistry 50, 1098710989.
  • 64
    van Thor, J. J., B. Borucki, W. Crielaard, H. Otto, T. Lamparter, J. Hughes, K. Hellingwerf and M. P. Heyn (2001) Light-Induced proton release and proton uptake reactions in the cyanobacterial phytochrome Cph1. Biochemistry 40, 1146011471.
  • 65
    Mailliet, J., G. Psakis, V. Sineshchekov, L.-O. Essen and J. Hughes (2011) Spectroscopy and a high-resolution crystal structure of Tyr-263 mutant of cyanobacterial phytochrome Cph1. J. Mol. Biol. 413, 115127.
  • 66
    Schmidt, P., T. Gensch, A. Remberg, W. Gärtner, S. E. Braslavsky and K. Schaffner (1998) The complexity of the Pr to Pfr phototransformation kinetics is an intrinsic property of native phytochrome. Photochem. Photobiol. 68, 754761.
  • 67
    Sineshchekov, V., L. Koppel, B. Esteban, J. Hughes and T. Lamparter (2002) Fluorescence investigation of the recombinant cyanobacterial phytochrome (Cph1) and its C-terminally truncated monomeric species (Cph1Δ2): Implication for holoprotein assembly, chromophore–apoprotein interaction and photochemistry. J. Photochem. Photobiol., B 67, 3950.
  • 68
    Sineshchekov, V. A., O. B. Ogorodnikova, P. F. Devlin and G. C. Whitelam (1998) Fluorescence spectroscopy and photochemistry of phytochromes A and B in wild-type, mutant and transgenic strains of Arabidopsis thaliana. J. Photochem. Photobiol., B 42, 133142.
  • 69
    Sineshchekov, V., A. Loskovich, N. Inagaki and M. Takano (2006) Two native pools of phytochrome A in monocots: Evidence from fluorescence investigations of phytochrome mutants of rice. Photochem. Photobiol. 82, 11161122.
  • 70
    van Thor, J. J., M. Mackeen, I. Kuprov, R. A. Dwek and M. R. Wormald (2006) Chromophore structure in the photocycle of the cyanobacterial phytochrome Cph1. Biophys. J. 91, 18111822.
  • 71
    Toh, K. C., E. A. Stojković, I. H. M. van Stokkum, K. Moffat and J. T. M. Kennis (2010) Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome. Proc. Natl. Acad. Sci. U S A 107, 91709175.
  • 72
    Toh, K. C., E. A. Stojković, I. H. M. van Stokkum, K. Moffat and J. T. M. Kennis (2011) Fluorescence quantum yield and photochemistry of bacteriophytochrome constructs. Phys. Chem. Chem. Phys. 13, 1198511997.
  • 73
    Wagner, J. R., J. Zhang, D. von Stetten, M. Günther, D. H. Murgida, M. A. Mroginski, J. M. Walker, K. T. Forest, P. Hildebrandt and R. D. Vierstra (2008) Mutational analysis of Deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the phytochromicity and proton exchange cycle of phytochromes. J. Biol. Chem. 283, 1221212226.
  • 74
    von Stetten, D., M. Günther, P. Scheerer, D. H. Murgida, M. A. Mroginski, N. Krauß, T. Lamparter, J. Zhang, D. M. Anstrom, R. D. Vierstra, K. T. Forest and P. Hildebrandt (2008) Chromophore heterogeneity and photoconversion in phytochrome crystals and solutions studied by resonance Raman spectroscopy. Angew. Chem. Int. Ed. 47, 47534755.
  • 75
    Spillane, K. M., J. Dasgupta and R. A. Mathies (2012) Conformational homogeneity and excited-state isomerization dynamics of the bilin chromophore in phytochrome Cph1 from resonance Raman intensities. Biophys. J. 102, 709717.
  • 76
    Sasaki, J. and J. L. Spudich (2000) Proton transport by sensory rhodopsin and its modulation by transducer-binding. Biochim. Biophys. Acta 1460, 230239.
  • 77
    Lanyi, J. K. (2004) Bacteriorhodopsin. Annu. Rev. Physiol. 66, 665688.
  • 78
    Smith, S. O. (2010) Structure and activation of the visual pigment rhodopsin. Annu. Rev. Biophys. 39, 309328.
  • 79
    Borg, O. A. and B. Durbeej (2008) Which factors determine the acidity of the phytochromobilin chromophore of plant phytochrome? Phys. Chem. Chem. Phys. 10, 25282537.
  • 80
    Esteban, B., M. Carrascal, J. Abian and T. Lamparter (2005) Light-induced conformational changes of cyanobacterial phytochrome Cph1 probed by limited proteolysis and autophosphorylation. Biochemistry 44, 450461.
  • 81
    Heyne, K., J. Herbst, B. Dominguez-Herradon, U. Alexiev and R. Diller (2000) Reaction control in bacteriorhodopsin: Impact of Arg82 and Asp85 on the fast retinal isomerization, studied in the second site revertant Arg82Ala/Gly231Cys and various purple and blue forms of bacteriorhodopsin. J. Phys. Chem. B 104, 60536058.
  • 82
    Piwowarski, P., E. Ritter, K. P. Hofmann, P. Hildebrandt, D. von Stetten, P. Scheerer, N. Michael, T. Lamparter and F. Bartl (2010) Light-induced activation of bacterial phytochrome Agp1 monitored by static and time-resolved FTIR spectroscopy. ChemPhysChem 11, 12071214.
  • 83
    Hahn, J., H. M. Strauss, F. T. Landgraf, H. F. Gimenèz, G. Lochnit, P. Schmieder and J. Hughes (2006) Probing protein–chromophore interactions in Cph1 phytochrome by mutagenesis. FEBS J. 273, 14151429.
  • 84
    von Stetten, D., S. Seibeck, N. Michael, P. Scheerer, M. A. Mroginski, D. H. Murgida, N. Krauss, M. P. Heyn, P. Hildebrandt, B. Borucki and T. Lamparter (2007) Highly conserved residues Asp-197 and His-250 in Agp1 phytochrome control the proton affinity of the chromophore and Pfr formation. J. Biol. Chem. 282, 21162123.
  • 85
    Andel, F. III, J. C. Lagarias and R. A. Mathies (1996) Resonance Raman analysis of chromophore structure in the Lumi-R photoproduct of phytochrome. Biochemistry 35, 1599716008.
  • 86
    Kikis, E. A., Y. Oka, M. E. Hudson, A. Nagatani and P. H. Quail (2009) Residues clustered in the light-sensing knot of phytochrome B are necessary for conformer-specific binding to signalling partner PIF3. PLoS Genet. 5, e1000352.
  • 87
    Foerstendorf, H., E. Mummert, E. Schäfer, H. Scheer and F. Siebert (1996) Fourier-transform infrared spectroscopy of phytochrome: Difference spectra of the intermediates of the photoreactions. Biochemistry 35, 1079310799.
  • 88
    Remberg, A., I. Lindner, T. Lamparter, J. Hughes, C. Kneip, P. Hildebrandt, S. E. Braslavsky, W. Gärtner and K. Schaffner (1997) Raman spectroscopic and light-induced kinetic characterization of a recombinant phytochrome of the cyanobacterium Synechocystis. Biochemistry 36, 1338913395.
  • 89
    Andel, F. III, J. T. Murphy, J. A. Haas, M. T. McDowell, I. van der Hoef, J. Lugtenburg, J. C. Lagarias and R. A. Mathies (2000) Probing the photoreaction mechanism of phytochrome through analysis of resonance Raman vibrational spectra of recombinant analogues. Biochemistry 39, 26672676.
  • 90
    Schwinté, P., W. Gärtner, S. Sharda, M.-A. Mroginski, P. Hildebrandt and F. Siebert (2009) The photoreactions of recombinant phytochrome CphA from the cyanobacterium Calothrix PCC7601: A low-temperature UV–Vis and FTIR study. Photochem. Photobiol. 85, 239249.
  • 91
    Torrance, J. B., J. E. Vazquez, J. J. Mayerle and V. Y. Lee (1981) Discovery of a neutral-to-ionic phase transition in organic materials. Phys. Rev. Lett. 46, 253257.
  • 92
    Kuwata-Gonokami, M., N. Peyghambarian, K. Meissner, B. Fluegel, Y. Sato, K. Ema, R. Shimano, S. Mazumdar, F. Guo, T. Tokihiro, H. Ezaki and E. Hanamura (1994) Exciton strings in an organic charge-transfer crystal. Nature 367, 4748.
  • 93
    Nagaosa, N. (1986) Domain wall picture of the neutral-ionic transition in TTF-chloranil. Solid State Commun. 57, 179183.
  • 94
    Möglich, A. and K. Moffat (2010) Engineered photoreceptors as novel optogenetic tools. Photochem. Photobiol. Sci. 9, 12861300.
  • 95
    Haran, G., K. Wynne, A. Xie, Q. He, M. Chance and R. M. Hochstrasser (1996) Excited state dynamics of bacteriorhodopsin revealed by transient stimulated emission spectra. Chem. Phys. Lett. 261, 389395.
  • 96
    Görner, H. and H. J. Kuhn (1995) cis-trans Photoisomerization of stilbenes and stilbene-like molecules. In Advances in Photochemistry, Vol. 19, (Edited by D. C. Neckers, D. C. Volman, and G. von Bünau), pp. 1117. John Wiley & Sons, Hoboken, NJ.
  • 97
    Mak-Jurkauskas, M. L., V. S. Bajaj, M. K. Hornstein, M. Belenky, R. G. Griffin and J. Herzfeld (2008) Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. Proc. Natl. Acad. Sci. U S A 105, 883888.
  • 98
    Höpfner, A. (1976) Irreversible Thermodynamik für Chemiker. Sammlung Göschen, Verlag de Gruyter, Berlin.
  • 99
    Feynman, R., R. Leighton and M. Sands (1964) The Feynman Lectures on Physics, Vol. 3. Addison-Wesley, Reading, MA.
  • 100
    Astumian, R. D. and P. Hänggi (2002) Brownian motors. Phys. Today 55, 3339.
  • 101
    Reimann, P. and P. Hänggi (2002) Introduction to the physics of Brownian motors. Appl. Phys. 75, 169178.
  • 102
    Hänggi, P. and F. Marchesoni (2009) Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387442.
  • 103
    Reimann, P. (2002) Brownian motors: Noisy transport far from equilibrium. Phys. Rep. 361, 57265.
  • 104
    Kay, E. R., D. A. Leigh and F. Zerbetto (2007) Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72191.
  • 105
    Kottas, G. S., L. I. Clarke, D. Horinek and J. Michl (2005) Artificial molecular rotors. Chem. Rev. 105, 12811376.
  • 106
    Browne, W. R. and B. L. Feringa (2006) Making molecular machines work. Nat. Nanotech. 1, 2535.
  • 107
    Rohmer, T. (2009) MAS NMR Study of the Photoreceptor Phytochrome. Dissertation, Universiteit Leiden.