• 1
    Häder, D.-P. and R. P. Sinha (2005) Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact. Mutat. Res., Fundam. Mol. Mech. Mutagen. 571, 221233.
  • 2
    Halliwell, B. and J. M. C. Gutteridge (1999) Free Radicals in Biology and Medicine, 3rd Edn. Oxford Univ. Press, Oxford.
  • 3
    Qiu, X., G. W. Sundin, L. Wu, J. Zhou and J. M. Tiedje (2005) Comparative analysis of differentially expressed genes in Shewanella oneidensis MR-1 following exposure to UVC, UVB, and UVA radiation. J. Bacteriol. 187, 35563564.
  • 4
    Matallana-Surget, S., F. Joux, M. J. Raftery and R. Cavicchioli (2009) The response of the marine bacterium Sphingopyxis alaskensis to solar radiation assessed by quantitative proteomics. Environ. Microbiol. 11, 26602675.
  • 5
    Wardman, P. and L. P. Candeias (1996) Fenton chemistry: An introduction. Radiat. Res. 145, 523531.
  • 6
    Choksi, K. B., J. E. Nuss, J. H. DeFord and J. Papaconstantinou (2008) Age-related alterations in oxidatively damaged proteins of mouse skeletal muscle mitochondrial electron transport chain complexes. Free Radical Biol. Med. 45, 826838.
  • 7
    Niki, E., Y. Yoshida, Y. Saito and N. Noguchi (2005) Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochem. Biophys. Res. Commun. 338, 668676.
  • 8
    Bourdon, E. and D. Blache (2001) The importance of proteins in defense against oxidation. Antioxid. Redox Signal. 3, 293311.
  • 9
    Ranquet, C., S. Ollagnier-de-Choudens, L. Loiseau, F. Barras and M. Fontecave (2007) Cobalt Stress in Escherichia coli. J. Biol. Chem. 282, 3044230451.
  • 10
    Thorgersen, M. P. and D. M. Downs (2007) Cobalt targets multiple metabolic processes in Salmonella enterica. J. Bacteriol. 189, 77747781.
  • 11
    Fantino, J.-R., B. Py, M. Fontecave and F. Barras (2010) A genetic analysis of the response of Escherichia coli to cobalt stress. Environ. Microbiol. 12, 28462857.
  • 12
    Bagwell, C. E., C. E. Milliken, S. Ghoshroy and D. A. Blom (2008) Intracellular copper accumulation enhances the growth of Kineococcus radiotolerans during chronic irradiation. Appl. Environ. Microbiol. 74, 13761384.
  • 13
    Daly, M. J., E. K. Gaidamakova, V. Y. Matrosova, J. G. Kiang, R. Fukumoto, D.-Y. Lee, N. B. Wehr, G. A. Viteri, B. S. Berlett and R. L. Levine (2010) Small-Molecule Antioxidant Proteome-Shields in Deinococcus radiodurans. PLoS ONE 5, e12570.
  • 14
    Daly, M. J., E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, M. Zhai, R. D. Leapman, B. Lai, B. Ravel, S.-M. W. Li, K. M. Kemner and J. K. Fredrickson (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol. 5, e92.
  • 15
    Barnese, K., E. B. Gralla, D. E. Cabelli and J. Selverstone Valentine (2008) Manganous Phosphate Acts as a Superoxide Dismutase. J. Am. Chem. Soc. 130, 46044606.
  • 16
    McEwan, A. G. (2009) New insights into the protective effect of manganese against oxidative stress: MicroCommentary. Mol. Microbiol. 72, 812814.
  • 17
    McNaughton, R. L., A. R. Reddi, M. H. S. Clement, A. Sharma, K. Barnese, L. Rosenfeld, E. B. Gralla, J. S. Valentine, V. C. Culotta and B. M. Hoffman (2010) Probing in vivo Mn2+ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. Proc. Natl. Acad. Sci. U.S.A., Early Ed. 107, 1533515339.
  • 18
    Slade, D. and M. Radman (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 75, 133191.
  • 19
    Gaballa, A. and J. D. Helmann (2002) A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis. Mol. Microbiol. 45, 9971005.
  • 20
    Korbashi, P., J. Katzhendler, P. Saltman and M. Chevion (1989) Zinc protects Escherichia coli against copper-mediated paraquat-induced damage. J. Biol. Chem. 264, 84798482.
  • 21
    Scott, C., H. Rawsthorne, M. Upadhyay, C. A. Shearman, M. J. Gasson, J. R. Guest and J. Green (2000) Zinc uptake, oxidative stress and the FNR-like proteins of Lactococcus lactis. FEMS Microbiol. Lett. 192, 8589.
  • 22
    Zhou, Q., J. Zhang, J. Fu, J. Shi and G. Jiang (2008) Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal. Chim. Acta 606, 135150.
  • 23
    Sciacca, F., J. A. Rengifo-Herrera, J. Wéthé and C. Pulgarin (2010) Dramatic enhancement of solar disinfection (SODIS) of wild Salmonella sp. in PET bottles by H2O2 addition on natural water of Burkina Faso containing dissolved iron. Chemosphere 78, 11861191.
  • 24
    Hobbie, J. E., R. J. Daley and S. Jasper (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 12251228.
  • 25
    Harada, E., K. I. Iida, S. Shiota, H. Nakayama and S. I. Yoshida (2010) Glucose metabolism in Legionella pneumophila: Dependence on the Entner-Doudoroff pathway and connection with intracellular bacterial growth. J. Bacteriol. 192, 28922899.
  • 26
    Pérez, J. M., I. L. Calderón, F. A. Arenas, D. E. Fuentes, G. A. Pradenas, E. L. Fuentes, J. M. Sandoval, M. E. Castro, A. O. Elías and C. C. Vásquez (2007) Bacterial toxicity of potassium tellurite: Unveiling an ancient enigma. PLoS ONE 2, e211.
  • 27
    He, Y. Y. and D. P. Häder (2002) UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: Protective effects of ascorbic acid and N-acetyl-L-cysteine. J. Photochem. Photobiol., B 66, 115124.
  • 28
    Semchyshyn, H., T. Bagnyukova, K. Storey and V. Lushchak (2005) Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli. Cell Biol. Int. 29, 898902.
  • 29
    Beers, R. F. J. and I. W. Sizer (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133140.
  • 30
    Anderl, J. N., J. Zahller, F. Roe and P. S. Stewart (2003) Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 47, 12511256.
  • 31
    McCord, J. M. and I. Fridovich (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 60496055.
  • 32
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248254.
  • 33
    Daly, M. J., E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, M. Zhai, A. Venkateswaran, M. Hess, M. V. Omelchenko, H. M. Kostandarithes, K. S. Makarova, L. P. Wackett, J. K. Fredrickson and D. Ghosal (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306, 10251028.
  • 34
    Granger, A. C., E. K. Gaidamakova, V. Y. Matrosova, M. J. Daly and P. Setlow (2011) Effects of Mn and Fe levels on Bacillus subtilis spore resistance and effects of Mn2+, other divalent cations, orthophosphate, and dipicolinic acid on protein resistance to ionizing radiation. Appl. Environ. Microbiol. 77, 3240.
  • 35
    Ghosh, S., A. Ramirez-Peralta, E. Gaidamakova, P. Zhang, Y. Q. Li, M. J. Daly and P. Setlow (2011) Effects of Mn levels on resistance of Bacillus megaterium spores to heat, radiation and hydrogen peroxide. J. Appl. Microbiol. 111, 663670.
  • 36
    Mudhoo, A., V. K. Garg and S. Wang (2012) Heavy Metals: Toxicity and Removal by Biosorption. In Environmental Chemistry for a Sustainable World. (Edited by E. Lichtfouse, J. Schwarzbauer and D. Robert), pp. 379442. Springer, The Netherlands.
  • 37
    Santo, C. E., E. W. Lam, C. G. Elowsky, D. Quaranta, D. W. Domaille, C. J. Chang and G. Grass (2011) Bacterial Killing by Dry Metallic Copper Surfaces. Appl. Environ. Microbiol. 77, 794802.
  • 38
    Macomber, L., C. Rensing and J. A. Imlay (2007) Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J. Bacteriol. 189, 16161626.
  • 39
    Barras, F. and M. Fontecave (2011) Cobalt stress in Escherichia coli and Salmonella enterica: molecular bases for toxicity and resistance. Metallomics 3, 11301134.
  • 40
    Moorhouse, C. P., B. Halliwell, M. Grootveld and J. M. C. Gutteridge (1985) Cobalt(II) ion as a promoter of hydroxyl radical and possible ‘crypto-hydroxyl’ radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers. BBA Gen. Subj. 843, 261268.
  • 41
    Anjem, A., S. Varghese and J. A. Imlay (2009) Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol. Microbiol. 72, 844858.
  • 42
    Yuan, M., M. Chen, W. Zhang, W. Lu, J. Wang, M. Yang, P. Zhao, R. Tang, X. Li, Y. Hao, Z. Zhou, Y. Zhan, H. Yu, C. Teng, Y. Yan, S. Ping, Y. Wang and M. Lin (2012) Genome Sequence and Transcriptome Analysis of the Radioresistant Bacterium Deinococcus gobiensis: Insights into the Extreme Environmental Adaptations. PLoS ONE 7, e34458.
  • 43
    Berlett, B. S., P. B. Chock, M. B. Yim and E. R. Stadtman (1990) Manganese(II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid-facilitated dismutation of hydrogen peroxide. Proc. Natl. Acad. Sci. U.S.A., Early Ed. 87, 389393.
  • 44
    Sobota, J. M. and J. A. Imlay (2011) Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc. Natl. Acad. Sci. U.S.A., Early Ed. 108, 54025407.
  • 45
    Archibald, F. S. and M. N. Duong (1986) Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria. Infect. Immun. 51, 631641.
  • 46
    Silver, S. and L. Phung (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J. Ind. Microbiol. Biotechnol. 32, 587605.
  • 47
    Singh, S. K., G. Grass, C. Rensing and W. R. Montfort (2004) Cuprous Oxidase Activity of CueO from Escherichia coli. J. Bacteriol. 186, 78157817.
  • 48
    Kammler, M., C. Schön and K. Hantke (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J. Bacteriol. 175, 62126219.
  • 49
    Braun, V., K. Hantke and W. Koster (1998) Bacterial iron transport: mechanisms, genetics, and regulation. Met. Ions Biol. Syst. 35, 67145.
  • 50
    Stadtman, E. R., B. S. Berlett and P. B. Chock (1990) Manganese-dependent disproportionation of hydrogen peroxide in bicarbonate buffer. Proc. Nat. Acad. Sci. U.S.A. 87, 384388.
  • 51
    Magnani, D. and M. Solioz (2007) How bacteria handle copper. In Molecular microbiology of heavy metals. (Edited by D. H. Nies and S. Silver), pp. 259285. Springer, Heidelberg, Germany.
  • 52
    Crossley, R. A., D. J. H. Gaskin, K. Holmes, F. Mulholland, J. M. Wells, D. J. Kelly, A. H. M. van Vliet and N. J. Walton (2007) Riboflavin Biosynthesis Is Associated with Assimilatory Ferric Reduction and Iron Acquisition by Campylobacter jejuni. Appl. Environ. Microbiol. 73, 78197825.