Synthetic bacteriochlorins enable systematic tailoring of substituents about the bacteriochlorin chromophore and thereby provide insights concerning the native bacteriochlorophylls of bacterial photosynthesis. Nine free-base bacteriochlorins (eight prepared previously and one prepared here) have been examined that bear diverse substituents at the 13- or 3,13-positions. The substituents include chalcone (3-phenylprop-2-en-1-onyl) derivatives with groups attached to the phenyl moiety, a “reverse chalcone” (3-phenyl-3-oxo-1-enyl), and extended chalcones (5-phenylpenta-2,4-dien-1-onyl, retinylidenonyl). The spectral and photophysical properties (τs, Φf, Φic, Φisc, τT, kf, kic, kisc) of the bacteriochlorins have been characterized. The bacteriochlorins absorb strongly in the 780–800 nm region and have fluorescence quantum yields (Φf) in the range 0.05–0.11 in toluene and dimethylsulfoxide. Light-induced electron promotions between orbitals with predominantly substituent or macrocycle character or both may give rise to some net macrocycle [LEFT RIGHT ARROW] substituent charge-transfer character in the lowest and higher singlet excited states as indicated by density functional theory (DFT) and time-dependent DFT calculations. Such calculations indicated significant participation of molecular orbitals beyond those (HOMO − 1 to LUMO + 1) in the Gouterman four-orbital model. Taken together, the studies provide insight into the fundamental properties of bacteriochlorins and illustrate designs for tuning the spectral and photophysical features of these near-infrared-absorbing tetrapyrrole chromophores.