• 1
    Esswein, A. J. and D. G. Nocera (2007) Hydrogen production by molecular photocatalysis. Chem. Rev. 107, 40224047.
  • 2
    Anpo, M. and M. Takeuchi (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 216, 505516.
  • 3
    Usseglio, S., A. Damin, D. Scarano, S. Bordiga, A. Zecchina and C. Lamberti (2007) (I2)n encapsulation inside TiO2: A way to tune photoactivity in the visible region. J. Am. Chem. Soc. 129, 28222828.
  • 4
    Palmisano, G., V. Augugliaro, M. Pagliaro and L. Palmisano (2007) Photocatalysis: A promising route for 21st century organic chemistry. Chem. Commun. 2007, 34253437.
  • 5
    Herrmann, J. M., C. Duchamp, M. Karkmaz, B. T. Hoai, H. Lachheb, E. Puzenat and C. Guillard (2007) Environmental green chemistry as defined by photocatalysis. J. Hazard. Mater. 146, 624629.
  • 6
    Ciambelli, P., D. Sannino, V. Palma, V. Vaiano and R. I. Bickley (2008) Reaction mechanism of cyclohexane selective photo-oxidation to benzene on molybdena/titania catalysts. Appl. Catal. A 349, 140147.
  • 7
    Ciambelli, P., D. Sannino, V. Palma, V. Vaiano and R. S. Mazzei (2009) A step forwards in ethanol selective photo-oxidation. Photochem. Photobiol. Sci. 8, 699704.
  • 8
    Shimizu, K. I., T. Kaneko, T. Fujishima, T. Kodama, H. Yoshida and Y. Kitayama (2002) Selective oxidation of liquid hydrocarbons over photoirradiated TiO2 pillared clays. Appl. Catal. A 225, 185191.
  • 9
    Agrios, A. G. and P. Pichat (2005) State of the art and perspectives on materials and applications of photocatalysis over TiO2. J. App. Electrochem. 35, 655663.
  • 10
    Sakthivel, S. and H. Kisch (2003) Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. ChemPhysChem 4, 487490.
  • 11
    Ohno, T., M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A 265, 115121.
  • 12
    Kubacka, A., G. Colón and M. Fernández-García (2009) Cationic (V, Mo, Nb, W) doping of TiO2-anatase: A real alternative for visible light-driven photocatalysts. Catal. Today 143, 286292.
  • 13
    Colón, G., M. Maicu, M. C. Hidalgo and J. A. Navío (2006) Cu-doped TiO2 systems with improved photocatalytic activity. Appl. Catal. B 67, 4151.
  • 14
    Sannino, D., V. Vaiano, P. Ciambelli, M. C. Hidalgo, J. J. Murcia and J. A. Navío (2012) Oxidative dehydrogenation of ethanol over Au/TiO2 photocatalysts. J. Adv. Oxid. Technol. 15, 284293.
  • 15
    Yu, J. G., J. F. Xiong, B. Cheng and S. W. Liu (2005) Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl. Catal. B 60, 211221.
  • 16
    Rosseler, O., M. V. Shankar, M. K. L. Du, L. Schmidlin, N. Keller and V. Keller (2010) Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2 (anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion. J. Catal. 269, 179190.
  • 17
    Murcia, J. J., M. C. Hidalgo, J. A. Navío, V. Vaiano, P. Ciambelli and D. Sannino (2012) Ethanol partial photoxidation on Pt/TiO2 catalysts as green route for acetaldehyde synthesis. Catal. Today 196, 101109.
  • 18
    Ciambelli, P., D. Sannino, V. Palma, V. Vaiano and R. S. Mazzei (2011) Intensification of gas-phase photoxidative dehydrogenation of ethanol to acetaldehyde by using phosphors as light carriers. Photochem. Photobiol. Sci. 10, 414418.
  • 19
    Wu, L., J. C. Yu and X. Z. Fu (2006) Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. J. Mol. Catal. A: Chem. 244, 2532.
  • 20
    Bessekhouad, Y., D. Robert and J. V. Weber (2005) Photocatalytic activity of CU2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal. Today 101, 315321.
  • 21
    Hernández-Alonso, M. D., F. Fresno, S. Suárez and J. M. Coronado (2009) Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy Environ. Sci. 2, 12311257.
  • 22
    Belver, C., C. Adán and M. Fernández-García (2009) Photocatalytic behaviour of Bi2MO6 polymetalates for rhodamine B degradation. Catal. Today 143, 274281.
  • 23
    Tang, J. W., Z. G. Zou and J. H. Ye (2004) Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catal. Lett. 92, 5356.
  • 24
    Fu, H., C. Pan, W. Yao and Y. Zhu (2005) Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B 109, 2243222439.
  • 25
    Kim, D. Y., S. Kim and M. Kang (2009) Synthesis of Bi2WO6 nanometer sheet shaped and approach to the photocatalysis. Bull. Korean Chem. Soc. 30, 630635.
  • 26
    Li, T. T., Y. J. Wang, Y. M. He, J. Cai, M. F. Luo and L. H. Zhao (2012) Preparation and photocatalytic property of Sr0.25Bi0.75O1.36 photocatalys. Mater. Lett. 74, 170172.
  • 27
    Wang, Y. J., Y. M. He, T. T. Li, J. Cai, M. F. Luo and L. H. Zhao (2012) Photocatalytic degradation of methylene blue on CaBi6O10/Bi2O3 composites under visible light. Chem. Eng. J. 189–190, 473481.
  • 28
    Zhang, C. and Y. Zhu (2005) Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater. 17, 35373545.
  • 29
    Amano, F., K. Nogami, R. Abe and B. Ohtani (2007) Facile hydrothermal preparation and photocatalytic activity of bismuth tungstate polycrystalline flake-ball particles. Chem. Lett. 36, 13141315.
  • 30
    Fu, H., L. Zhang, W. Yao and Y. Zhu (2006) Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process. App. Catal. B 66, 100110.
  • 31
    Zhang, L., W. Wang, Z. Chen, L. Zhou and W. Zhu (2007) Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. J. Mater. Chem. 17, 25262532.
  • 32
    Zhang, L., W. Wang and L. Zhou (2007) Bi2WO6 nano- and microstructures: Shape control and associated visible-light-driven photocatalytic activities. Small 3, 16181625.
  • 33
    Colón, G., S. Murcia-López, M. C. Hidalgo and J. A. Navío (2010) Sunlight highly photoactive Bi2WO6-TiO2 heterostructures for rhodamine B degradation. Chem. Commun. 46, 48094811.
  • 34
    Arslan, I. and I. A. Balcioglu (1999) Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: A comparative study. Dyes Pigm. 43, 95108.
  • 35
    Ruppert, G., R. Bauer and G. Heisler (1994) UV-O3, UV-H2O2, UV-TiO2 and the Photo-Fenton reaction-comparison of advanced oxidation processes for waste-water treatment. Chemosphere 28, 14471454.
  • 36
    Wu, K. Q., Y. D. Xie, J. C. Zhao and H. Hidaka (1999) Photo-Fenton degradation of a dye under visible light irradiation. J. Mol. Catal. A: Chem. 144, 7784.
  • 37
    Neamtu, M., A. Yediler, I. Siminiceanu, M. Macoveanu and A. Kettrup (2004) Decolorization of disperse red 354 azo dye in water by several oxidation processes - a comparative study. Dyes Pigm. 60, 6168.
  • 38
    Martínez-Huitle, C. A. and E. Brillas (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl. Catal. B 87, 105145.
  • 39
    Sannino, D., V. Vaiano, L. A. Isupova and P. Ciambelli (2012) Heterogeneous photo-Fenton oxidation of organic pollutants on structured catalysts. J. Adv. Oxid. Technol. 15, 294300.
  • 40
    Murcia-López, S., M. C. Hidalgo, J. A. Navío and G. Colón (2011) Novel Bi2WO6-TiO2 heterostructures for rhodamine B degradation under sunlike irradiation. J. Hazard. Mater. 185, 14251434.
  • 41
    Yan, X. L., T. Ohno, K. Nishijima, R. Abe and B. Ohtani (2006) Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chem. Phys. Lett. 429, 606610.