SEARCH

SEARCH BY CITATION

References

  • 1
    Gilligan, P. H. (1995) Pseudomonas and Burkholderia. In Manual of Clinical Microbiology, 6th Edition (Edited by P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover and R. H. Yolken), pp. 509519. American Society for Microbiology Press, Washington, DC.
  • 2
    Peleg, A. Y. and D. C. Hooper (2010) Hospital-acquired infections due to Gram-negative bacteria. N. Engl. J. Med. 362, 18041813.
  • 3
    Farme, J. J. (1995) Enterobacteriaceae: Introduction and identification. In Manual of Clinical Microbiology, 6th Edition (Edited by P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover and R. H. Yolken), pp. 438449. American Society for Microbiology Press, Washington, DC.
  • 4
    Schaberg, D. R. (1991) Major trends in the microbial etiology of nosocomial infections. Ann. Intern. Med. 91(Suppl. 3B), 72S75S.
  • 5
    Hammoud, M. S., A. Al-Taiar, L. Thalib, N. Al-Sweih, S. Pathan and D. Isaacs (2012) Incidence, aetiology and resistance of late-onset neonatal sepsis: A five-year prospective study. J. Paediatr. Child Health 48, 604609.
  • 6
    Aiken, A. M., N. Mturi, P. Njuguna, S. Mohammed, J. A. Berkley, I. Mwangi, S. Mwarumba, B. S. Kitsao, B. S. Lowe, S. C. Morpeth, A. J. Hall, I. Khandawalla, J. A. Scott and Kilifi Bacteraemia Surveillance Group (2011) Risk and causes of paediatric hospital-acquired bacteraemia in Kilifi District Hospital, Kenya: a prospective cohort study. Lancet 378, 20212027.
  • 7
    Neu, H. C. (1992) The crisis in antibiotic resistance. Science 257, 10641073.
  • 8
    Sagripanti, J.-L., C. A. Eklund, P. A. Trost, K. C. Jinneman, C. Abeyta, C. A. Kaysner and W. E. Hill (1997) Sensitivity of Thirteen Species of Pathogenic Bacteria to Seven Chemical Germicides. Am. J. Infect. Control 25, 335339.
  • 9
    Grabow, W. O. K., J. S. Burger and E. M. Nupen (1980) Evaluation of acid-fast bacteria, Candida albicans, enteric viruses and conventional indicators for monitoring wastewater reclamation systems. Prog. Water Technol. 12, 803817.
  • 10
    Medscape Reference, Drug, Disease & Procedures (2012) Pseudomonas aeruginosa Infections. Available at: http://emedicine.medscape.com/article/226748-overview. Accessed on July 23, 2012.
  • 11
    Todar's Online Textbook of Bacteriology (2012) Available at: www.textbookofbacteriology.net. Accessed on August 29, 2012.
  • 12
    Moe, C. L. (1996) Waterborne transmission of infectious agents. In Manual of Environmental Microbiology (Edited by C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stezenbach and M. V. Walter), pp. 136152. American Society for Microbiology Press, Washington, DC.
  • 13
    Toranzos, G. A. and G. A. McFeters (1997) Detection of indicator microorganisms in environmental freshwaters and drinking waters. In Manual of Environmental Microbiology (Edited by C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stezenbach and M. V. Walter), pp. 184194. American Society for Microbiology Press, Washington, DC.
  • 14
    Tyrrell, R. M. (1978) Solar dosimetry with repair deficient bacterial spores: Action spectra, photoproduct measurements and a comparison with other biological systems. Photochem. Photobiol. 27, 571579.
  • 15
    Tyrrell, R. M. and A. Souza-Neto (1981) Lethal effects of natural solar ultraviolet radiation in repair proficient and repair deficient strains of Escherichia coli: Actions and interactions. Photochem. Photobiol. 34, 331337.
  • 16
    Sagripanti, J.-L., A. Levy, J. Robertson, A. Merritt and T. J. Inglis (2009) Inactivation of Virulent Burkholderia pseudomallei by Sunlight. Photochem. Photobiol. 85, 978986.
  • 17
    Lytle, C. D. and J.-L. Sagripanti (2005) Predicted inactivation of viruses of relevance to biodefense by solar radiation. J. Virol. 79, 1424414252.
  • 18
    Sagripanti, J.-L., L. Voss, H.-J. Marschall and C. D. Lytle (2013) Inactivation of vaccinia virus by natural sunlight and by artificial uvb radiation. Photochem. Photobiol. 89, 132138.
  • 19
    Sagripanti, J.-L., B. Hülseweh, G. Grote, L. Voss, K. Böhling and H.-J. Marschall (2011) Microbial Inactivation for Safe and Rapid Diagnostics of Infectious Samples. Appl. Environ. Microbiol. 77, 72897295.
  • 20
    Sagripanti, J.-L., G. Grote, B. Niederwöhrmeier, B. Hülseweh and H.-J. Marschall (2012) Photochemical inactivation of Pseudomonas aeruginosa. Photochem. Photobiol. 88, 201206.
  • 21
    Sagripanti, J.-L. and C. D. Lytle (2011) Sensitivity to Ultraviolet Radiation of Lassa, Vaccinia, and Ebola Viruses Dried on Surfaces. Arch. Virol. 156, 489494.
  • 22
    Coohill, T. P. and J.-L. Sagripanti (2008) Overview of the inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense. Photochem. Photobiol. 84, 10841090.
  • 23
    Coohill, T. P. (1994) Exposure response curves action spectra and amplification factors. In Stratospheric Ozone Depletion/UVB Radiation in the Biosphere, Vol. 118 (Edited by R. H. Biggs and M. E. B. Joyner), NATO ASI Series, pp. 5762. Springer-Verlag, Berlin.
  • 24
    Coohill, T. P. and J.-L. Sagripanti (2009) Bacterial inactivation by Solar Ultraviolet radiation compared with sensitivity to 254 nm radiation. Photochem. Photobiol. 85, 10431052.
  • 25
    Yabuuchi, E., Y. Kosako, H. Oyaizu, I. Yano, H. Hotta, Y. Hashimoto, T. Ezaki and M. Arakawa (1992) Proposal of Burkholderia gen. nov. and trans-genus, with the type species Burkholderia cepaciacom. Nova Microbiol. Imunol. 36, 12511275.