SEARCH

SEARCH BY CITATION

References

  • 1
    Carrera, M., J. Kesaven, R. Zandomeni and J.-L. Sagripanti (2005) Method to determine the number of bacterial spores within aerosol particles. Aerosol Sci. Technol. 39, 960965.
  • 2
    King, B., J. Kesaven and J.-L. Sagripanti (2011) Germicidal UV sensitivity of bacteria in aerosols and on contaminated surfaces. Aerosol Sci. Technol. 45, 6452011.
  • 3
    Ben-David, A. and J.-L. Sagripanti (2010) A model for inactivation of microbes suspended in the atmosphere by solar ultraviolet radiation. Photochem. Photobiol. 86, 895908.
  • 4
    Sagripanti, J.-L. and C. D. Lytle (2007) Inactivation of influenza virus by solar radiation. Photochem. Photobiol. 83, 12781282.
  • 5
    Sagripanti, J.-L., L. Voss, H.J. Marschall and C.D. Lytle (2013) Inactivation of vaccinia virus by natural sunlight and by artificial UVB radiation. Photochem. Photobiol. 89, 132138.
  • 6
    Sagripanti, J.-L. and C. D. Lytle (2011) Sensitivity to ultraviolet radiation of Lassa, Vaccinia, and Ebola viruses dried on surfaces. Arc. Virol. 156, 489494.
  • 7
    Sagripanti, J.-L., A. M. Rom and L. E. Holland (2010) Persistence in darkness of virulent alpha viruses, Ebola virus, and Lassa virus deposited on solid surfaces. Arc. Virol. 155, 20352039.
  • 8
    Sagripanti, J.-L., A. Levy, J. Robertson, A. Merritt and T. J. Inglis (2009) Inactivation of Virulent Burkholderia pseudomallei by sunlight. Photochem. Photobiol. 85, 978986.
  • 9
    Berk, A., G.P. Anderson, P.K. Acharya, J.H. Chetwynd, L.S. Bernstein, E.P. Shettle, M.W. Matthew and S.M. Adler-Golden (1999) MODTRAN4: User's Manual, Air Force Research Laboratory Report.
  • 10
    Berk, A., G. P. Anderson, P. K. Acharya, L. S. Bernstein, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke and P. E. Lewis (2005) MODTRAN5: A reformulated atmospheric band model with auxiliary species and practical multiple scattering options. Proc. SPIE Int. Soc. Opt. Eng. 5655, 8895.
  • 11
    U.S. Air Force (2011) MODTRAN is a “narrow band model” (resolution as fine as 0.2 cm−1) atmospheric radiative transfer code, Developed by the United States Air Force with Spectral Sciences. Available at: http://www.modtran5.com. Accessed on 4 March 2013.
  • 12
    Lytle, C. D. and J.-L. Sagripanti (2005) Predicted inactivation of viruses of relevance to biodefense. J. Virolol. 79, 1424414252.
  • 13
    Smith, W. J. (1990) Modern Optical Engineering, The Design of Optical Systems, 2nd edn. McGraw-Hill, New York.
  • 14
    Patterson, E. M. and J. B. Gillespie (1989) Simplified ultaviolet and visible wavelength atmospheric propagation model. Appl. Opt. 28, 425429.
  • 15
    Tornow, C., C.C. Borel and B.J. Powers (1994) Robust temperature retrieval using multi-spectral and multi-angular IR measurements. Proc. IGARSS 94, 441443, Pasadena, CA.
  • 16
    Asmat, A., E.J. Milton and P.M. Atkinson (2008) Atmospheric correction of multiple flightline hyperspectral data (CASI-2). Proceedings of the Remote Sensing and Photogrammetry Society Conference, University of Exeter, UK.
  • 17
    Coohill, P. and J.-L. Sagripani (2009) Bacterial inactivation by solar ultraviolet radiation compared to sensitivity to 254 nm radiation. Photochem. Photobiol. 85, 10431052.