• 1
    Linsebiger, A. L., G. Lu and J. T. Yates (1995) Photocatalysis on TiO2 surfaces: principles, mechanism, and selected results. Chem. Rev. 95, 735758.
  • 2
    Kudo, A. and Y. Miseki (2009) Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253278.
  • 3
    Hernández-Alonso, M. D., F. Fresno, S. Suárez and J. M. Coronado (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ. Sci. 2, 12311257.
  • 4
    Xu, H., C. Wu, H. Li, J. Chu, G. Sun, Y. Xu and Y. Yan (2009) Synthesis, characterization and photocatalytic activities of rare earth-loaded BiVO4 catalysts. Appl. Surf. Sci. 256, 597602.
  • 5
    Jiang, H., M. Nagai and K. Kobayashi (2009) Enhanced photocatalytic activity for degradation of methylene blue over V2O5/BiVO4 composite. J. Alloys Compd. 479, 821827.
  • 6
    Jiang, H., H. Endo, H. Natori, M. Nagai and K. Kobayashi (2008) Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method. J. Eur. Ceramic Soc. 28, 29552962.
  • 7
    Xu, Y. H., C. J. Liu, M. J. Chen and Y. Q. Liu (2011) A review in visible-light-driven BiVO4 photocatalysts. Int. J. Nanopart. 4, 268283.
  • 8
    Pratsinis, S. E., R. Stroble and H. J. Metz (2008) Brilliant yellow, transparent pure, and SiO2-coated BiVO4 nanoparticles made in flames. Chem. Mater. 20, 63466351.
  • 9
    Guo, Z., C. Shao, J. Mu, M. Zhang, Z. Zhang, P. Zhang, B. Chen and Y. Liu (2011) Controllable fabrication of cadmium phthalocyanine nanostructures immobilized on electrospun polyacrylonitrile nanofibers with high photocatalytic properties under visible light. Catal. Commun. 12, 880885.
  • 10
    Marcì, G., E. García-López, G. Mele, L. Palmisano, G. Dyrda and R. Słota (2009) Comparison of the photocatalytic degradation of 2-propanol in gas–solid and liquid–solid systems by using TiO2–LnPc2 hybrid powders. Catal. Today 143, 203210.
  • 11
    Weber, J. H. and D. H. Bush (1965) Complexes derived from strong field ligands. XIX. Magnetic properties of transition metal derivatives of 4,4′,4″,4‴-tetrasulfophthalocyanine. Inorg. Chem. 4, 469471.
  • 12
    Golmojdeh, H. and M. A. Zanjanchi (2012) A facile approach for synthesis of BiVO4 nano-particles possessing high surface area and various morphologies. Cryst. Res. Technol. 47, 10141025.
  • 13
    Moller, K. and T. Bein. (1998) Inclusion chemistry in periodic mesoporous hosts. Chem. Mater. 10, 29502963.
  • 14
    Sorokin, A. B. and A. Tuel (2000) Metallophthalocyanine functionalized silicas: catalysts for the selective oxidation of aromatic compounds. Catal. Today 57, 4559.
  • 15
    Hu, Y., D. Li, Y. Zheng, W. Chen, Y. He, Y. Shao, X. Fu and G. Xiao (2011) BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Appl. Catal. B 104, 3036.
  • 16
    Fan, H., D. Wang, L. Wang, H. Li, P. Wang, T. Jiang and T. Xie (2011) Hydrothermal synthesis and photoelectric properties of BiVO4 with different morphologies: an efficient visible-light photocatalyst. Appl. Surf. Sci. 257, 77587762.
  • 17
    Castillo, N. C., A. Heel, T. Graule and C. Pulgarin (2010) Flame-assisted synthesis of nanoscale, amorphous and crystalline, spherical BiVO4 with visible-light photocatalytic activity. Appl. Catal. B 95, 335347.
  • 18
    Fidalgo, A. M. and L. M. Ilharco (2012) Tailoring the structure and hydrophobic properties of amorphous silica by silylation. Micropor. Mesopor. Mater. 158, 3946.
  • 19
    Yang, S., P. Yuan, H. He, Z. Qin, Q. Zhou, J. Zhu and D. Liu (2012) Effect of reaction temperature on grafting of γ-aminopropyl triethoxysilane (APTES) onto kaolinite. Appl. Clay Sci. 62–63, 814.
  • 20
    Wang, C., G. Zhou, Y. Li, N. Lu, H. Song and L. Zhang (2012) Biocatalytic esterification of caprylic acid with caprylic alcohol by immobilized lipase on amino-functionalized mesoporous silica. Colloids Surf. A 406, 7583.
  • 21
    Pan, Y., W. Chen, S. Lu and Y. Zhang (2005) Novel aqueous soluble cobalt phthalocyanine: synthesis and catalytic activity on oxidation of 2-mercaptoethanol. Dyes Pigm. 66, 115121.
  • 22
    Gärtner, M., V. Dremov, P. Müller and H. Kisch (2005) Bandgap widening of titania through semiconductor support interactions. Chem. Phys. Chem. 6, 714718.
  • 23
    Agboola, B., K. I. Ozoemena and T. Nyokong (2006) Comparative efficiency of immobilized non-transition metal phthalocyanine photosensitizers for the visible light transformation of chlorophenols. J. Mol. Catal. A: Chem. 248, 8492.
  • 24
    Iliev, V. and A. Mihaylova (2002) Photooxidation of sodium sulfide and sodium thiosulfate under irradiation with visible light catalyzed by water soluble polynuclear phthalocyanine complexes. J. Photochem. Photobiol., A 149, 2330.
  • 25
    Iliev, V., V. Alexiev and L. Bilyarska (1999) Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds. J. Mol. Catal. A: Chem. 137, 1522.
  • 26
    Zhang, H., X. Quan, S. Chen, H. Zhao and Y. Zhao (2006) The removal of sodium dodecylbenzene sulfonate surfactant from water using silica/titania nanorods/nanotubes composite membrane with photocatalytic capability. Appl. Surf. Sci. 252, 85988604.
  • 27
    Zhang, Z., W. Wang, M. Shang and W. Yin (2010) Photocatalytic degradation of rhodamine B and phenol by solution combustion synthesized BiVO4 photocatalyst. Catal. Commun. 11, 982986.
  • 28
    Zugle, R., E. Antunes, S. Khene and T. Nyokong (2012) Photooxidation of 4-chlorophenol sensitized by lutetium tetraphenoxy phthalocyanine anchored on electrospun polystyrene polymer fiber. Polyhedron 33, 7481.
  • 29
    Zanjanchi, M. A., A. Ebrahimian and M. Arvand (2010) Sulphonated cobalt phthalocyanine–MCM-41: an active photocatalyst for degradation of 2,4-dichlorophenol. J. Hazard. Mater. 175, 9921000.
  • 30
    Chen, D. and A. K. Ray (1998) Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Wat. Res. 32, 32233234.