• 1
    Hu, Q., M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert and A. Darzins (2008) Microalgaltriacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 54(4), 621639.
  • 2
    Jasvinder, S., Sai, G. (2010) Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev. 14, 25962610.
  • 3
    Brennan, L. and P. Owende (2010) Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Sust. Energ. Rev. 14, 557577.
  • 4
    Bernard, O. (2011) Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. J. Process Contr. 21, 13781389.
  • 5
    Fon Sing, S., A. Isdepsky, M. A. Borowitzka and N. R. Moheimani (2013) Production of biofuels from microalgae. Mitig. Adapt. Strateg. Glob. Change 18(1), 4772.
  • 6
    Mata, T. M., A. A. Martins and N. S. Caetano (2010) Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev. 14, 217232.
  • 7
    Raja, R., S. Hemaiswarya, N. A. Kumar, S. Sridhar and R. Rengasamy (2008) A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol. 34(2), 7788.
  • 8
    Concas, A., M. Pisu and G. Cao (2010) Novel simulation model of the solar collector of BIOCOIL photobioreactors for CO2 sequestration with microalgae. Chem. Eng. J. 157, 297303.
  • 9
    Concas, A., M. Pisu and G. Cao (2009) Novel simulation model of BIOCOIL photobioreactors for CO2 sequestration. Chem. Eng. Trans. 17, 11131118.
  • 10
    Kumar, K., C. N. Dasgupta, B. Nayak, P. Lindblad and D. Das (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol. 102(8), 49454953.
  • 11
    Spolaore, P., C. Joannis-Cassan, E. Duran and A. Isambert (2006) Commercial applications of microalgae. J. BiosciBioeng. 101, 8796.
  • 12
    Chojnacka, K. and A. Noworyta (2004) Evaluation of Spirulinasp.growth in photoautotrophic, heterotrophic and mixotrophiccultures. Enzyme Microb. Technol. 34, 461465.
  • 13
    Perez-Garcia, O., F. M. E. Escalante, L. E. de-Bashan and Y. Bashan (2011) Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 45(1), 1136.
  • 14
    García-Malea, M. C., F. G. Acién, J. M. Fernández, M. C. Cerón and E. Molina (2006) Continuous production of green cells of Haematococcuspluvialis: Modeling of the irradiance effect. Enzyme Microb. Tech. 38, 981989.
  • 15
    Perner-Nochta, I. and C. Posten (2007) Simulations of light intensity variation in photobioreactors. J. Biotechnol. 131, 276285.
  • 16
    Murphy, T. E. and H. Berberoglu (2011) Effect of algae pigmentation on photobioreactor productivity and scale-up: A light transfer perspective. J Quant. Spectrosc. R. A. 112, 28262834.
  • 17
    Molina Grima, E., F. G. Acién Fernández, F. García Camacho and Y. Chisti (1999) Photobioreactors: Light regime, mass transfer, and scaleup. J. Biotechnol. 70, 231247.
  • 18
    Levert, J. M. and J. Xia (2001) Modeling the growth curve for Spirulina (Arthrospira) maxima, a versatile microalga for producing uniformly labelled compounds with stable isotopes. J. Appl. Phycol. 13, 359367.
  • 19
    Masojídek, J., Š. Papácek, M. Sergejevová, V. Jirka, J. Cervený, J. Kunc, J. Korecko, O. Verbovikova, J. Kopecký, D. Štys and G. Torzillo (2003) A closed solar photobioreactorfor cultivation of microalgae under supra-high irradiance: Basic design and performance. J. Appl. Phycol. 15(2–3), 239248.
  • 20
    Yun, Y. S. and J. M. Park (2001) Attenuation of monochromatic and polychromatic lights in Chlorella vulgaris suspensions. Appl. Microbiol. Biotechnol. 55, 765770.
  • 21
    Csőgör, Z., M. Herrenbauer, K. Schmidt and C. Posten (2001) Light distribution in a novel photobioreactor – modelling for optimization. J. Appl. Phycol. 13(4), 325333.
  • 22
    Heinrich, J. M., I. Niizawa, F. A. Botta, A. R. Trombert and H. A. Irazoqui (2012) Analysis and design of photobioreactors for microalgae production II: Experimental validation of a radiation field simulator based on a monte carlo algorithm. Photochem. Photobiol. 88(4), 952960.
  • 23
    Heinrich, J. M., I. Niizawa, F. A. Botta, A. R. Trombert and H. A. Irazoqui (2012) Analysis and design of photobioreactors for microalgae production I: Method and parameters for radiation field simulation. Photochem. Photobiol. 88(4), 938951.
  • 24
    Clescerl, L. S., A. E. Greenberg and A. D. Eaton (1999) Total Suspended Solids Dried at 103°-105°C. In Standard Methods for the Examination of Water and Wastewater (Edited by L. S. Clescerl, A. E. Greenberg, and A. D. Eaton), 20th edn. American Public Health Association, Washington, DC.
  • 25
    Ritchie, R. J. (2008) Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46(1), 115126.
  • 26
    Mendelson, H. D. (1967) The prediction of bubble terminal velocities from wave theory. AIChE J. 13, 250.
  • 27
    Amol, A. K. and B. J. Jyeshtharaj (2005) Bubble formation and bubble rise velocity in gas-liquid systems: A review. Ind. Eng. Chem. Res. 44, 58735931.
  • 28
    Vincenti, W. G. and C. H. Kruger (1967) Introduction to Physical Gas Dynamics, pp. 1214. John Wiley & Sons, New York.